Structures of electromagnetic type on vector bundles

E. Reyes, V. Cruceanu \& P.M. Gadea

Abstract

Structures of electromagnetic type on a vector bundle are introduced and studied. The metric case is also defined and studied. The sets of compatible connections are determined and a canonical connection is defined.

1 Introduction

Structures of electromagnetic type (em-structures) and structures of metric electromagnetic type (mem-structures) on a manifold were progressively introduced in $[9,11,7]$ (see also $[6]$) and studied in detail in $[5,7,8,13,14]$. In the present paper we define similar structures for the case of a vector bundle $\xi=(E, \pi, M)$, and relate them to product, complex, para-Hermitian, Hermitian, para-Kähler or indefinite Kähler, structures. (In the sequel, by a pseudo-Riemannian metric we shall understand a metric of any signature, and by an indefinite (metric) structure a structure including a pseudo-Riemannian metric.) Then, we determine the set of connections on ξ compatible with those structures and we introduce a canonical connection. Considering an almost para-Hermitian (resp. indefinite Hermitian) structure on the base manifold M and an indefinite Hermitian (resp. para-Hermitian) structure of the bundle ξ, we prove that the corresponding diagonal lift of these structures, with respect to a connection on ξ, are mem-structures on the total space E. Finally, some properties of those mem-structures are established.

We recall the physical origin of the topic $([9,11])$. Let M^{4} be a spacetime of general relativity, with gravitational tensor g of signature -+++ . Let F be the electromagnetic field of type $(0,2)$, which is skewsymmetric, that is a 2 -form. Setting $F(X, Y)=g(J X, Y)$, the tensor field J so defined is the electromagnetic tensor field of type $(1,1)$ associated to F. We have $g(J X, Y)+g(X, J Y)=0$. The characteristic equation of J is $\operatorname{det}(J-\lambda I)=0$, which is satisfied by J, and we have

$$
J^{4}+2 k J^{2}+l I=0, \quad k=-\frac{1}{4} \operatorname{trace} J^{2}, \quad l=\operatorname{det} J .
$$

If $x \in M^{4}$, it is said that J_{x} is of $1^{s t}, 2^{n d}$, or $3^{r d}$ class at x if, respectively,

$$
l_{x} \neq 0, \quad l_{x}=0, k_{x} \neq 0, \quad l_{x}=0, k_{x}=0
$$

It is said that J is of $1^{s t}, 2^{\text {nd }}$, or $3^{\text {rd }}$ class if it is of such class at every x. The characteristic polynomial of the second class is $J^{2}\left(J^{2}+2 k\right)$, but the minimal polynomial is $J\left(J^{2}+2 k\right)$, so that the condition $J\left(J^{2}+2 k\right)=0$ characterizes the second class. The field of an electromagnetic plane wave is of $3^{r d}$ class. The field of a moving electron is of $2^{\text {nd }}$ class. More complicated fields belong to the $1^{\text {st }}$ class. The equation one gets from the minimal polynomial in the $1^{\text {st }}$ class is

$$
\begin{equation*}
\left(J^{2}-f^{2}\right)\left(J^{2}+h^{2}\right)=0 \tag{1.1}
\end{equation*}
$$

with f, h nowhere-vanishing C^{∞} functions on M^{4}. Such a tensor field J on a general manifold M determines a G-structure on M.

To handle the nonconstant local cross-section situation corresponding to (1.1), one can use the relationships among G-structures, related sections of an associated bundle and functions of certain kind on M, as follows: Let ($\left.\mathcal{P}, \pi_{P}, M, H\right)$ be a principal bundle with group $H, H \times W \rightarrow W$ a left action of H on a manifold W, and $\left(E=\mathcal{P} \times_{H} W, \pi_{E}, M, W\right)$ the associated bundle. A J-subset S of W with corresponding group G, a subgroup of H, is defined by the conditions: (1) $S \subset$ fixpoint set of G, (2) $h \in H, h(S) \cap S \neq \emptyset \Rightarrow h \in G$. For instance, points are J-subsets with G the corresponding isotropy group. A cross-section K of π_{E} is a J-section if it can be locally represented as the "product" of a cross-section σ of π_{P} and a S-valued function K, so that

$$
K_{x}=\sigma_{x} \cdot \widetilde{K}_{x}=\text { equivalence class of }\left(\sigma_{x}, \widetilde{K}_{x}\right) \text { in } E .
$$

Then \widetilde{K} is globally defined, and the σ generate a principal subbundle of \mathcal{P}. K is a constant J-section if and only if \widetilde{K} is constant. Different sections can generate the same subbundle, and in fact, every principal subbundle can be generated by a constant J-section.

Now, let \mathcal{P} be the principal bundle of frames over M, so that $H=G L(n, \mathbb{R})$, and let W be a real vector space. If $J \in W$ is given with the conditions stated above, a J-section generates a J-structure with group G, which is a G-structure. The tensor K has in principle variable components in adapted frames. This is a slight generalization with respect to the usually considered G-structures, given by tensors with constant components, which here correspond to constant J-sections. Since every J-structure is generated by some constant J-section, this generalization is useless for the study of the J-structure itself; but if the emphasis shifts to the study of variable J-sections, the results are significant, specially with respect to the parallelizability of the tensors.

In the particular case of a $(1,1)$ tensor field J satisfying $\left(J^{2}-f^{2}\right)\left(J^{2}+h^{2}\right)=$ 0 , with characteristic polynomial $(x-p)^{r_{1}}(x-p)^{r_{2}}\left(x^{2}+q^{2}\right)^{s}, r_{1}, r_{2}, s \geq 1$, $r_{1}+r_{2}+2 s=n=\operatorname{dim} M$, the J-subset consists of matrices of the form

$$
\left(\begin{array}{llll}
p I_{r_{1}} & & & \\
& -p I_{r_{2}} & & \\
& & q I_{s} & -q I_{s}
\end{array}\right)
$$

and the structural group is $G=G L\left(r_{1}, \mathbb{R}\right) \times G L\left(r_{2}, \mathbb{R}\right) \times G L(s, \mathbb{C})$. It is proved ([7]) that the G-structure defined by J above is also defined by a tensor field, say again J, satisfying $\left(J^{2}-1\right)\left(J^{2}+1\right)=0$, that is, the relation $J^{4}=1$ considered in the present paper.

Notice that the G-structure is exactly the same, not an associated or equivalent one. In the 4 -dimensional case the group reduces to $G=G L(1, \mathbb{R}) \times$ $G L(1, \mathbb{R}) \times G L(1, \mathbb{C})$. It is also proved $([7])$ that there exists an adapted Riemannian metric so that the group can be reduced to $G=O\left(r_{1}\right) \times O\left(r_{2}\right) \times U(s)$, and in the 4 -dimensional case to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(1)$, that is, essentially to the unitary group $U(1)$.

2 Structures of electromagnetic type on a vector bundle

Let $\xi=(E, \pi, M)$ be a C^{∞} vector bundle with total space E and projection map π over a connected paracompact base manifold M. The rank of E is the (common) dimension of the fibres. Let $C^{\infty}(M)$ denote the ring of real functions, $\mathcal{T}_{q}^{p}(M)$ the $C^{\infty}(M)$-module of (p, q)-tensor fields, and $\mathcal{T}(M)$ the $C^{\infty}(M)$-tensor algebra of M. We respectively denote by $\mathcal{T}_{q}^{p}(\xi)$ and $\mathcal{T}(\xi)$ the $C^{\infty}(M)$-module of tensor fields of type (p, q) and the $C^{\infty}(M)$-tensor algebra of the bundle ξ.

We recall that an almost product (resp. almost complex) structure on a manifold M is defined by a tensor field J of type $(1,1)$ satisfying $J^{2}=I$ (resp. $J^{2}=-I$). An almost para-Hermitian (resp. indefinite almost Hermitian) structure on M is defined by a couple (J, g), given by an almost product (resp. almost complex) structure J and a pseudo-Riemannian metric compatible with J in the sense that $g(J X, Y)+g(X, J Y)=0, X, Y \in \mathfrak{X}(M)$; that is, as an anti-isometry (resp. isometry). A para-Kähler (resp. indefinite Kähler) manifold is a manifold M endowed with an almost para-Hermitian (resp. indefinite almost Hermitian) structure such that the Levi-Civita connection of g parallelizes J.

Definition 2.1. A structure of electromagnetic type on $\xi=(E, \pi, M)$ is an M-endomorphism J of ξ satisfying

$$
J^{4}=I,
$$

with characteristic polynomial $(x-1)^{r_{1}}(x+1)^{r_{2}}\left(x^{2}+1\right)^{s}$, where r_{1}, r_{2}, s are constants greater than or equal to 1 such that $r_{1}+r_{2}+2 s=\operatorname{rank} E$.

Setting $P=J^{2}$, we have $P^{2}=I$, so P is a product structure on ξ, admitting J as a "square root". Conversely, if P is a product structure admitting a "square root" J, then J is an em-structure on ξ. Denoting by ξ_{1} and ξ_{2} respectively the +1 and -1 eigen-subbundles of P, it is easy to see that ξ_{1} and ξ_{2} are invariant by J and that $J_{1}=\left.J\right|_{\xi_{1}}$ defines a product structure of ξ_{1} and $J_{2}=\left.J\right|_{\xi_{2}}$ a complex structure of ξ_{2}. So, one has

$$
\begin{equation*}
\xi=\xi_{1} \oplus \xi_{2}, \quad J=J_{1} \oplus J_{2} \tag{2.1}
\end{equation*}
$$

Conversely, if ξ_{1} and ξ_{2} are two supplementary subbundles of ξ, J_{1} is a product structure of ξ_{1}, and J_{2} a complex structure of ξ_{2}, then $J=J_{1} \oplus J_{2}$ is an em-structure on ξ. Denoting by P_{1} and P_{2} the projections of ξ on ξ_{1} and ξ_{2} respectively, we obtain

$$
P=P_{1}-P_{2}, \quad J=J_{1} \circ P_{1}+J_{2} \circ P_{2}
$$

Summing up we have
Proposition 2.1. An em-structure on the vector bundle $\xi=(E, \pi, M)$ can be defined by each one of the following conditions:
(1) An M-endomorphism J of ξ satisfying $J^{4}=I$,
(2) A product structure P of ξ admitting a "square root" J,
(3) Two supplementary subbundles ξ_{1} and ξ_{2} of ξ respectively endowed with a product structure and a complex structure.

Remark 2.1. A product structure P which admits a "square root" is a particular one because rank ξ_{2} must be even.

Definition 2.2. A structure of metric electromagnetic type (mem-structure) on the vector bundle ξ is a pair (J, g), where J is an em-structure and g a pseudo-Riemannian metric on ξ satisfying the compability condition

$$
\begin{equation*}
g(J X, Y)+g(X, J Y)=0, \quad X, Y \in \xi \tag{2.2}
\end{equation*}
$$

Denoting by δ_{J} the derivation defined by J in the tensor algebra $\mathcal{T}(\xi)$, the relation (2.2) can be written as

$$
\delta_{J} g=0
$$

from which it follows $g(P X, P Y)=g(X, Y), X, Y \in \mathfrak{X}(M)$. Therefore, the pair (P, g) is a pseudo-Riemannian product structure of ξ and so the subbundles ξ_{1} and ξ_{2} are mutually orthogonal with respect to g. Denoting respectively by g_{1} and g_{2} the restrictions of g to ξ_{1} and ξ_{2}, from (2.2) we obtain

$$
\begin{equation*}
\delta_{J_{1}} g_{1}=0, \quad \delta_{J_{2}} g_{2}=0 \tag{2.3}
\end{equation*}
$$

which may be written

$$
\begin{equation*}
g_{1}\left(J_{1} X, J_{1} X\right)=-g_{1}(X, Y), \quad g_{2}\left(J_{2} X, J_{2} Y\right)=g_{2}(X, Y), \quad X, Y \in \mathfrak{X}(\xi) . \tag{2.4}
\end{equation*}
$$

Hence $\left(J_{1}, g_{1}\right)$ is a para-Hermitian structure of ξ_{1} and $\left(J_{2}, g_{2}\right)$ is an indefinite Hermitian structure of ξ_{2}. Conversely, if ξ_{1} and ξ_{2} are two supplementary subbundles of ξ such that ξ_{1} is endowed with a para-Hermitian structure $\left(J_{1}, g_{1}\right)$ and ξ_{2} with an indefinite Hermitian structure $\left(J_{2}, g_{2}\right)$, then considering J as given by (2.1) and setting

$$
g=g_{1} \oplus g_{2}
$$

one obtains a mem-structure on ξ. So we have

Proposition 2.2. A mem-structure (J, g) on ξ is equivalent to a pair of supplementary subbundles ξ_{1} and ξ_{2} respectively endowed with a para-Hermitian structure $\left(J_{1}, g_{1}\right)$ and an indefinite Hermitian structure $\left(J_{2}, g_{2}\right)$.

Remark 2.2. If (J, g) is a mem-structure on ξ, then we have: $\operatorname{rank} \xi_{1}$ and $\operatorname{rank} \xi_{2}$ are even; trace $J_{1}=\operatorname{trace} J_{2}=0 ; \operatorname{sign} g_{1}=0$.

Setting for a mem-structure (J, g) on ξ :

$$
\Omega(X, Y)=g(J X, Y), \quad \Omega_{i}(X, Y)=g_{i}\left(J_{i} X, Y\right), \quad i=1,2,
$$

it follows that Ω, Ω_{1}, and Ω_{2} are 2-forms which determine almost symplectic structures of ξ, ξ_{1} and ξ_{2}, so that

$$
\Omega=\Omega_{1} \oplus \Omega_{2}
$$

These 2-forms satisfy

$$
\begin{equation*}
\delta_{J} \Omega=0, \quad \delta_{J_{1}} \Omega_{1}=0, \quad \delta_{J_{2}} \Omega_{2}=0 \tag{2.5}
\end{equation*}
$$

Remark 2.3. The meaning of conditions (2.2), (2.3) and (2.5) is the following: The groups of automorphisms of $\mathfrak{X}\left(\xi_{1}\right), \mathfrak{X}\left(\xi_{2}\right)$, and $\mathfrak{X}(\xi)$ given by

$$
\alpha_{t}=I_{1} \cosh t+J_{1} \sinh t, \quad \beta_{t}=I_{2} \cos t+J_{2} \sin t, \quad \gamma_{t}=\alpha_{t} \oplus \beta_{t},
$$

$t \in \mathbb{R}$, determine actions on the tensor algebras $\mathcal{T}\left(\xi_{1}\right), \mathcal{T}\left(\xi_{2}\right)$, and $\mathcal{T}(\xi)$, which respectively preserve the structures $\left(J_{1}, g_{1}, \Omega_{1}\right),\left(J_{2}, g_{2}, \Omega_{2}\right)$, and (J, g, Ω).

3 Compatible connections

3.1 The general case

Definition 3.1. A connection D on the vector bundle ξ is said to be compatible with an em-structure J if

$$
\begin{equation*}
D J=0 . \tag{3.1}
\end{equation*}
$$

From this it follows $D P=0$, hence D preserves the subbundles ξ_{1} and ξ_{2}, i.e., for $X \in \mathfrak{X}(M), Y_{1} \in \mathfrak{X}\left(\xi_{1}\right), Y_{2} \in \mathfrak{X}\left(\xi_{2}\right)$, one has $D_{X} Y_{1} \in \mathfrak{X}\left(\xi_{1}\right), D_{X} Y_{2} \in \mathfrak{X}\left(\xi_{2}\right)$. Setting then

$$
D_{X}^{1} Y_{1}=D_{X} Y_{1}, D_{X}^{2} Y_{2}=D_{X} Y_{2}, \quad X \in \mathfrak{X}(M), Y_{1} \in \mathfrak{X}\left(\xi_{1}\right), Y_{2} \in \mathfrak{X}\left(\xi_{2}\right)
$$

we have that D^{1} and D^{2} are respectively connections on ξ_{1} and ξ_{2}, so that

$$
\begin{equation*}
D_{X}=D_{X}^{1} \circ P_{1}+D_{X}^{2} \circ P_{2}, \quad D_{X}^{1} J_{1}=0, \quad D_{X}^{2} J_{2}=0, \quad X \in \mathfrak{X}(M) \tag{3.2}
\end{equation*}
$$

Conversely, if D^{1} and D^{2} are respectively connections on ξ_{1} and ξ_{2}, then D given as in (3.2) is a connection on ξ satisfying $D P=0$. If D_{1} and D_{2} satisfy the respective conditions in (3.2), then D satisfies (3.1) too. Thus, it follows

Proposition 3.1. A connection D on ξ is compatible with the em-structure J if and only if there exist two connections D^{1} on ξ_{1} and D^{2} on ξ_{2}, respectively compatible with the product structure J_{1} and the complex structure J_{2}, so that

$$
\begin{equation*}
D=D^{1} \circ P_{1}+D^{2} \circ P_{2} \tag{3.3}
\end{equation*}
$$

Consider now on the subbundles ξ_{i} of ξ, the operators $\Phi_{J_{i}}$ and $\Psi_{J_{i}}$ given by (3.4) $\left(\Phi_{J_{i}} D^{i}\right)_{X}=\frac{1}{2}\left(D_{X}^{i}+J_{i}^{-1} \circ D_{X}^{i} \circ J_{i}\right),\left(\Psi_{J_{i}} \mathcal{A}^{i}\right)_{X}=\frac{1}{2}\left(\mathcal{A}_{X}^{i}+J_{i}^{-1} \circ \mathcal{A}_{X}^{i} \circ J_{i}\right)$, where $X \in \mathfrak{X}(M), D^{i}$ is a connection on ξ_{i}, and $\mathcal{A}^{i} \in \Lambda^{1}(M) \otimes \mathfrak{X}\left(\xi_{i}\right) \otimes \Lambda^{1}\left(\xi_{i}\right)$ (now and in the sequel we take $i=1,2$). From [1, 13] and Proposition 3.1 we obtain

Proposition 3.2. The set of connections on ξ compatible with the em-structure J is given by

$$
D_{X}=\left\{\left(\Phi_{J_{1}} D^{\circ 1}\right)_{X}+\left(\Psi_{J_{1}} \mathcal{A}^{1}\right)_{X}\right\} \circ P_{1}+\left\{\left(\Phi_{J_{2}} D^{\circ 2}\right)_{X}+\left(\Psi_{J_{2}} \mathcal{A}^{2}\right)_{X}\right\} \circ P_{2}
$$

where $X \in \mathfrak{X}(M)$ and $D^{\circ i}$ is an arbitrary fixed connection on ξ_{i}, \mathcal{A}^{i} denotes any element of $\Lambda^{1}(M) \otimes \mathfrak{X}\left(\xi_{i}\right) \otimes \Lambda^{1}\left(\xi_{i}\right)$, and $\Phi_{J_{i}}, \Psi_{J_{i}}$ are given by (3.4).
Definition 3.2. A connection D on ξ is said to be compatible with the memstructure (J, g) if

$$
D J=0, \quad D g=0
$$

From which it follows: $D P=0 ; D=D^{1} \circ P_{1}+D^{2} \circ P_{2}$, where D^{i} are the restrictions of D to ξ_{1} and $\xi_{2} ; D^{i} J_{i}=0$; and $D^{i} g_{i}=0$. Conversely, if D^{1} and D^{2} are connections on ξ_{1} and ξ_{2}, compatible with the para-Hermitian structure $\left(J_{1}, g_{1}\right)$ and the indefinite Hermitian structure $\left(J_{2}, g_{2}\right)$ respectively, then the connection D given by (3.3) is compatible with the mem-structure (J, g) on ξ. So, we have
Proposition 3.3. A connection D on ξ is compatible with the mem-structure (J, g) on ξ, if and only if there are two connections D^{1} and D^{2} on the subbundles ξ_{1} and ξ_{2}, respectively compatible with the para-Hermitian structure $\left(J_{1}, g_{1}\right)$ and the indefinite Hermitian structure $\left(J_{2}, g_{2}\right)$, so that D is given by (3.3).

Setting then
(3.5) $\left(\Phi_{g_{i}} D^{i}\right)_{X}=\frac{1}{2}\left(D_{X}^{i}+g_{i}^{-1} \circ D_{X}^{i} \circ g_{i}\right),\left(\Psi_{g_{i}} \mathcal{A}^{i}\right)_{X}=\frac{1}{2}\left(\mathcal{A}_{X}^{i}+g_{i}^{-1} \circ \mathcal{A}_{X}^{i} \circ g_{i}\right)$,
we obtain from [1], Prop. 3.3, and (2.4)
Proposition 3.4. The set of connections on ξ compatible with the mem-structure (J, g) is given by

$$
\begin{aligned}
D_{X}=\left\{\left(\left(\Phi_{g_{1}} \circ \Phi_{J_{1}}\right) D^{\circ 1}\right)_{X}\right. & \left.+\left(\left(\Psi_{g_{1}} \circ \Psi_{J_{1}}\right) \mathcal{A}^{1}\right)_{X}\right\} \circ P_{1} \\
& +\left\{\left(\left(\Phi_{g_{2}} \circ \Phi_{J_{2}}\right) D^{\circ 2}\right)_{X}+\left(\left(\Psi_{g_{2}} \circ \Psi_{J_{2}}\right) \mathcal{A}^{2}\right)_{X}\right\} \circ P_{2}
\end{aligned}
$$

where $D^{\circ i}$ is an arbitrary fixed connection on ξ_{i}, $\mathcal{A}^{i} \in \Lambda^{1}(M) \otimes \mathfrak{X}\left(\xi_{i}\right) \otimes \Lambda^{1}\left(\xi_{i}\right)$, and $\Phi_{J_{i}}, \Phi_{g_{i}}, \Psi_{J_{i}}, \Psi_{g_{i}}$ are given by (3.4) and (3.5).

3.2 The case of the tangent bundle

We now consider the case of ξ being the tangent bundle of the manifold M, i.e., $\xi=(T M, \pi, M)$. In this case, for a mem-structure (J, g) on M, the pair (P, g) is a pseudo-Riemannian almost product structure on M, and $\left(J_{1}, g_{1}\right),\left(J_{2}, g_{2}\right)$, are respectively a para-Hermitian [4] and an indefinite Hermitian structure [10] on ξ_{1} and ξ_{2}. If ∇ is a linear connection on M, compatible with P, i.e., $\nabla P=0$, then its restrictions ∇^{1} and ∇^{2} to ξ_{1} and ξ_{2} are connections on these subbundles. If T is the torsion tensor of ∇, we shall call torsion tensor of ∇^{i} to the tensor fields T^{i} given by $T^{i}=\left.P_{i} \circ T\right|_{\xi_{i}}$, or in more detail

$$
T^{i}\left(X_{i}, Y_{i}\right)=\nabla_{X_{i}} Y_{i}-\nabla_{Y_{i}} X_{i}-P_{i}\left[X_{i}, Y_{i}\right], \quad X_{i}, Y_{i} \in \mathfrak{X}\left(\xi_{i}\right)
$$

We call tensors of nonholonomy of the distributions ξ_{1} and ξ_{2} to the tensor fields $S^{1}=\left.P_{2} \circ T\right|_{\xi_{1}}$ and $S^{2}=\left.P_{1} \circ T\right|_{\xi_{2}}$, respectively. We obtain

$$
S^{1}\left(X_{1}, Y_{1}\right)=-P_{2}\left[X_{1}, Y_{1}\right], \quad S^{2}\left(X_{2}, Y_{2}\right)=-P_{1}\left[X_{2}, Y_{2}\right]
$$

It follows
Proposition 3.5. The distribution ξ_{1} (resp. ξ_{2}) is involutive if and only if $S^{1}=0\left(\right.$ resp. $\left.S^{2}=0\right)$.

After some computations we obtain from [3, 10, 14]
Proposition 3.6. For a mem-structure (J, g) on a manifold M, there exists a unique linear connection ∇ with torsion tensor T, satisfying the conditions

$$
\begin{align*}
& \nabla P=0, \quad T(P X, Y)=T(X, P Y) \tag{3.6}\\
& \nabla_{X_{i}}^{i} J_{i}=0, \quad \nabla_{X_{i}}^{i} g_{i}=0, \quad T^{i}\left(J_{i} X, I_{i} Y\right)=T^{i}\left(I_{i} X, J_{i} Y\right) \tag{3.7}
\end{align*}
$$

Definition 3.3. We shall call the canonical connection associated to the memstructure (J, g) on the manifold M to the connection given by the conditions (3.6) and (3.7).

Remark 3.1. Notice that this connection slightly differs from that given in Theorem 5.3 in [14].

For the canonical connection we obtain from (3.6):

$$
\nabla_{X_{2}}^{1} Y_{1}=P_{1}\left[X_{2}, Y_{1}\right], \quad \nabla_{X_{1}}^{2} Y_{2}=P_{2}\left[X_{1}, Y_{2}\right] .
$$

Denoting by ξ_{1}^{1}, ξ_{1}^{2} the eigen-subbundles of J_{1} corresponding to $\varepsilon=+1, \varepsilon=-1$, by π_{1}^{1}, π_{1}^{2} the projection maps of ξ_{1} on ξ_{1}^{1}, and ξ_{1}^{2} and by X_{1}^{i}, Y_{1}^{i} any elements of $\mathfrak{X}\left(\xi_{1}^{i}\right)$, we obtain from the first equation in (3.7)

$$
\begin{aligned}
& \nabla_{X_{1}^{2}}^{1} Y_{1}^{1}=\pi_{1}^{1} P_{1}\left[X_{1}^{2}, Y_{1}^{1}\right], \quad \nabla_{X_{1}^{1}}^{1} Y_{1}^{2}=\pi_{1}^{2} P_{1}\left[X_{1}^{1}, Y_{1}^{2}\right] \\
& g_{1}\left(\nabla_{X_{1}^{1}}^{1} Y_{1}^{1}, Z_{1}^{2}\right)=X_{1}^{1} g_{1}\left(Y_{1}^{1}, Z_{1}^{2}\right)-g_{1}\left(\left[X_{1}^{1}, Z_{1}^{2}\right], Y_{1}^{1}\right), \\
& \\
& g_{1}\left(\nabla_{X_{1}^{2}}^{1} Y_{1}^{2}, Z_{1}^{1}\right)=X_{1}^{2} g_{1}\left(Y_{1}^{2}, Z_{1}^{1}\right)-g_{1}\left(\left[X_{1}^{2}, Z_{1}^{1}\right], Y_{1}^{2}\right) .
\end{aligned}
$$

From the second equation in (3.7) above it results, exactly as in [14, Th. 5.1], the expression for $\nabla_{X_{2}}^{2} Y_{2}$.

For J and g we obtain

$$
\begin{aligned}
& \left(\nabla_{X_{1}} J\right) Y_{1}=0, \quad\left(\nabla_{X_{2}} J\right) Y_{2}=0, \quad\left(\nabla_{X_{1}} J\right) Y_{2}=\left(\nabla_{X_{1}}^{2} J_{2}\right) Y_{2} \\
& \quad\left(\nabla_{X_{2}} J\right) Y_{1}=\left(\nabla_{X_{1}}^{1} J_{1}\right) Y_{1}, \quad\left(\nabla_{X_{1}} g\right)\left(Y_{1}, Z_{1}\right)=0, \quad\left(\nabla_{X_{2}} g\right)\left(Y_{2}, Z_{2}\right)=0 \\
& \quad\left(\nabla_{X_{2}} g\right)\left(Y_{1}, Z_{1}\right)=\left(L_{X_{2}} g\right)\left(Y_{1}, Z_{1}\right), \quad\left(\nabla_{X_{1}} g\right)\left(Y_{2}, Z_{2}\right)=\left(L_{X_{1}} g\right)\left(Y_{2}, Z_{2}\right),
\end{aligned}
$$

where L stands for the Lie derivative.

4 Structures of electromagnetic type on the total space of a vector bundle

Let $\xi=(E, \pi, M)$ be a vector bundle and $\left(x^{j}\right),\left(y^{a}\right),\left(x^{j}, y^{a}\right)$, local coordinates in adapted charts on M, ξ, and E, respectively. We denote by $\left(\partial_{j}\right),\left(e_{a}\right),\left(\partial_{j}, \partial_{a}\right)$ the corresponding local bases, where $\partial_{j}=\partial / \partial x^{j}, \partial_{a}=\partial / \partial y^{a}, j=1,2, \ldots, m$, $a, b, c=1,2, \ldots, n$ (see [2]). Setting for each $z=(x, y) \in E, V_{z} E=\operatorname{Ker} \pi_{* z}$, we obtain the vertical distribution and so the vertical subbundle of $T E$, denoted by $V E$. Let $C^{\infty v}=\left\{f^{v}=f \circ \pi: f \in C^{\infty}(M)\right\}$ be the subring of $C^{\infty}(E)$ naturally isomorphic to $C^{\infty}(M)$. Setting for each $\mu \in \Lambda^{1}(\xi)$, locally given by $\mu(x)=\mu_{a}(z) e^{a}$,

$$
\gamma(\mu)(z)=\mu_{a}(x) y^{a},
$$

we obtain a class of functions on E enjoying the property that every vector field $A \in \mathfrak{X}(E)$ is uniquely determined by its values on those functions. The mapping γ may be extended to tensor fields $S \in \mathcal{T}_{1}^{1}(\xi)$ by

$$
(\gamma S)(\gamma(\mu))=\gamma(\mu \circ S), \quad \mu \in \Lambda^{1}(\xi)
$$

If $S(x)=S_{b}^{a}(x) e_{a} \otimes e^{b}$, then $\gamma S(z)=S_{b}^{a}(x) y^{b} \partial_{a}$, i.e., γS is a vertical vector field on E. Now, let D be a connection on ξ and $X \in \mathfrak{X}(M), u \in \mathfrak{X}(\xi)$. Setting

$$
X^{h}(\gamma \mu)=\gamma\left(D_{X} \mu\right), \quad u^{v}(\gamma \mu)=\mu(u) \circ \pi, \quad \mu \in \Lambda^{1}(\xi)
$$

we obtain two vector fields X^{h} and u^{v} on E, respectively called the horizontal lift of X and the vertical lift of u. We have the useful formulas [2]:

$$
\begin{aligned}
(f X)^{h}= & f^{v} X^{h},(f u)^{v}=f^{v} u^{v}, \quad\left[X^{h}, Y^{h}\right]=[X, Y]^{h}-\gamma R_{X Y}^{D}, \quad\left[u^{v}, w^{v}\right]=0 \\
& {\left[X^{h}, u^{v}\right]=\left(D_{X} u\right)^{v}, \quad f \in \mathbb{C}^{\infty}(M), X, Y \in \mathfrak{X}(M), u, w \in \mathfrak{X}(\xi) }
\end{aligned}
$$

Now, putting

$$
Q\left(X^{h}\right)=X^{h}, \quad Q\left(u^{v}\right)=-X^{v}, \quad X \in \mathfrak{X}(M), u \in \mathfrak{X}(\xi)
$$

we obtain an almost product Q structure on E whose +1 and -1 eigendistributions, are respectively called the horizontal distribution $H E$ of the connection D and the vertical distribution $V E$ of the bundle.

For $f \in \mathcal{T}_{1}^{1}(M), \varphi \in \mathcal{T}_{1}^{1}(\xi), g \in \mathcal{T}_{2}(M), \psi \in \mathcal{T}_{2}(\xi)$, we define the horizontal lift or the vertical lift $f^{h}, \varphi^{v}, g^{h}, \psi^{v}$, respectively by

$$
\begin{array}{r}
f^{h}\left(X^{h}\right)=f(X)^{h}, \quad f^{h}\left(u^{v}\right)=0, \quad \varphi^{v}\left(X^{h}\right)=0, \quad \varphi^{v}\left(u^{v}\right)=\varphi(u)^{v}, \tag{4.1}\\
g^{h}\left(X^{h}, Y^{h}\right)=g(X, Y)^{v}, \quad g^{h}\left(X^{h}, u^{v}\right)=g^{h}\left(u^{v}, X^{h}\right)=g^{h}\left(u^{v}, w^{v}\right)=0, \\
\psi^{v}\left(X^{h}, Y^{h}\right)=\psi^{v}\left(X^{h}, u^{v}\right)=\psi^{v}\left(u^{v}, Y^{h}\right)=0, \quad \psi^{v}\left(u^{v}, w^{v}\right)=\psi(u, w)^{v}, \\
X, Y \in \mathfrak{X}(M), u, w \in \mathfrak{X}(\xi) .
\end{array}
$$

We then define the diagonal lifts J and G for the pairs (f, φ) and (g, ψ) by

$$
\begin{equation*}
J=f^{h}+\varphi^{v}, \quad G=g^{h}+\psi^{v} . \tag{4.2}
\end{equation*}
$$

From (4.1) and (4.2) we have

$$
J^{n}\left(X^{h}\right)=\left(f^{n}(X)\right)^{h}, \quad J^{n}\left(u^{v}\right)=\left(\varphi^{n}(u)\right)^{v}, \quad n \in \mathbb{N}^{*}
$$

So $J^{4}=I$, that is J is an em-structure on E, if and only if $f^{4}=I_{1}$ and $\varphi^{4}=I_{2}$, that is, either f and φ are both em-structures or one is an em-structure and the other an almost product or almost complex structure, or finally f is an almost product (resp. almost complex) and φ is a complex (resp. product) structure on M and ξ respectively. In the sequel we only consider the last case.

Hence, let J be an em-structure on the total space E of ξ given by the diagonal lift in the first equation in (4.2) of an almost product (resp. almost complex) structure f on the base manifold M and a complex (resp. product) structure φ on the bundle ξ, that is, which satisfy

$$
f^{2}=\varepsilon I_{1}, \quad \varphi^{2}=-\varepsilon I_{2}, \quad \varepsilon=1(\text { resp. } \quad \varepsilon=-1)
$$

with respect to a connection D on ξ. For the almost product structure P associated to J, we obtain $P=\varepsilon Q$, that is, P coincides up to the sign with the almost product structure Q above associated to D.

Now, let G be the diagonal lift in the second equation in (4.2), with respect to D, for the pair (g, ψ) of metrics on M and ξ. From (4.2) we obtain

$$
\delta_{J} G=\left(\delta_{f} g\right)^{h}+\left(\delta_{\varphi} \psi\right)^{v}
$$

and so $\delta_{J} G=0$ if and only if $\delta_{f} g=0$ and $\delta_{\varphi} \psi=0$. It follows
Proposition 4.1. The pair (J, G) of diagonal lifts, with respect to a connection D on ξ, of an almost product (resp. almost complex) structure f on M and a complex (resp. product) structure φ of ξ, and the nondegenerate metrics g on M and ψ on ξ, is a mem-structure on the total space E of ξ if and only if the pair (f, g) is an almost para-Hermitian (resp. indefinite almost Hermitian) structure on M. The pair (φ, ψ) is an indefinite Hermitian (resp. para-Hermitian) structure on ξ.

Denoting by ω and τ the 2-forms associated to the structures (f, g) on M and (φ, ψ) on ξ, and by $\Omega_{1}, \Omega_{2}, \Omega$, the 2 -forms associated to the structures $\left(f^{h}, g^{h}\right)$ on $H E,\left(\varphi^{v}, \psi^{v}\right)$ on $V E$ and (J, G) on $T E$, we obtain

$$
\Omega_{1}=\omega^{h}, \quad \Omega_{2}=\tau^{v}, \quad \Omega=\omega^{h} \oplus \tau^{v} .
$$

From the hypotheses of Prop. 4.1 it follows

$$
\delta_{f} g=0, \quad \delta_{f} \omega=0, \quad \delta_{\varphi} \psi=0, \quad \delta_{\varphi} \tau=0, \quad \delta_{J} G=0, \quad \delta_{J} \Omega=0 .
$$

Remark 4.1. The groups of automorphisms of $\mathfrak{X}(M), \mathfrak{X}(\xi), \mathfrak{X}(E)$, given respectively for $\varepsilon=1$ and $\varepsilon=-1$, by

$$
\begin{array}{lll}
\alpha_{t}=I_{1} \cosh t+f \sinh t, \quad \beta_{t}=I_{2} \cos t+\varphi \sin t, & \gamma_{t}=\alpha_{t}^{h} \oplus \beta_{t}^{h}, & t \in \mathbb{R}, \\
\alpha_{t}=I_{1} \cos t+f \sin t, \quad \beta_{t}=I_{2} \cosh t+\varphi \sinh t, & \gamma_{t}=\alpha_{t}^{h} \oplus \beta_{t}^{h}, & t \in \mathbb{R},
\end{array}
$$

determine on the tensor algebras $\mathcal{T}(M), \mathcal{T}(\xi)$, and $\mathcal{T}(E)$, actions which preserve the structures $(f, g, \omega),(\varphi, \psi, \tau)$ and (J, G, Ω).

For two connections ∇ on M and D on ξ, we define the horizontal lift ∇^{h} on the subbundle $H E$ and the vertical lift D^{v} on the subbundle $V E$ (each one with respect to the connection D), respectively by

$$
\nabla_{X^{h}}^{h} Y^{h}=\left(\nabla_{X} Y\right)^{h}, \quad \nabla_{u^{v}}^{h} Y^{h}=0, \quad D_{X^{h}}^{v} w^{v}=\left(D_{X} w\right)^{v}, \quad D_{u^{v}}^{v} w^{v}=0 .
$$

Putting them

$$
\mathcal{D}_{A} X=\nabla_{A}^{h} H X+D_{A}^{v} V X, \quad A, X \in \mathfrak{X}(E),
$$

where H and V denote the horizontal and vertical projectors of $T E$ on $H E$ and $V E$, we obtain a linear connection \mathcal{D} on E, called the diagonal lift of the pair (∇, D) with respect to the connection D (see [2]), whose restrictions to the subbundles $\xi_{1}=H E$ and $\xi_{2}=V E$ are $\mathcal{D}_{1}=\nabla^{h}$ and $\mathcal{D}_{2}=D^{v}$. The nonvanishing components of the torsion and curvature tensors of \mathcal{D} are given by

$$
\begin{align*}
& \mathcal{T}\left(X^{h}, Y^{h}\right)=T^{\nabla}(X, Y)^{h}+\gamma R_{X Y}^{D} \tag{4.3}\\
& \mathcal{R}_{X^{h} Y^{h}} Z^{h}=\left(R_{X Y}^{\nabla} Z\right)^{h}, \quad \mathcal{R}_{X^{h} Y^{h}} u^{v}=\left(R_{X Y}^{D} u\right)^{v},
\end{align*}
$$

where T^{∇}, R^{∇}, and R^{D} stand for the torsion tensor of ∇ and the curvature tensors of ∇ and D.

For the covariant derivatives, with respect to \mathcal{D}, of the horizontal lift of f and g, and the vertical lift of φ and ψ we obtain

$$
\begin{aligned}
& \mathcal{D}_{X^{h}} f^{h}=\left(\nabla_{X} f\right)^{h}, \quad \mathcal{D}_{u^{v}} f^{h}=0, \quad \mathcal{D}_{X^{h}} g^{h}=\left(\nabla_{X} g\right)^{h}, \quad \mathcal{D}_{u^{v}} g^{h}=0, \\
& \mathcal{D}_{X^{h}} \varphi^{v}=\left(D_{X} \varphi\right)^{v}, \quad \mathcal{D}_{u^{v}} \varphi^{v}=0, \quad \mathcal{D}_{X^{h}} \psi^{v}=\left(D_{X} \psi\right)^{v}, \quad \mathcal{D}_{u^{v}} \psi^{v}=0 .
\end{aligned}
$$

So, for the diagonal lifts J and G of the pairs (f, φ) and (g, ψ), it follows

$$
\begin{array}{ll}
\mathcal{D}_{X^{h}} J=\left(\nabla_{X} f\right)^{h}+\left(D_{X} \varphi\right)^{v}, & \mathcal{D}_{u^{v}} J=0 \tag{4.4}\\
\mathcal{D}_{X^{h}} G=\left(\nabla_{X} g\right)^{h}+\left(D_{X} \psi\right)^{v}, & \mathcal{D}_{u^{v}} G=0
\end{array}
$$

Hence, $\mathcal{D} J=0$ if and only if $\nabla f=0, D \varphi=0$; and $\mathcal{D} G=0$ if and only if $\nabla g=0, D \psi=0$. From (4.3) and (4.4) it follows, for $P=J^{2}$, that $\mathcal{D} P=0$ and $\mathcal{T} \circ P \times I=\mathcal{T} \circ I \times P$ for any connections ∇ on M and D on ξ. After that we have

$$
\begin{gathered}
\nabla_{X^{h}}^{h} g^{h}=\left(\nabla_{X} g\right)^{h}, \quad D_{u^{v}}^{v} \varphi^{v}=0, \quad D_{u^{v}}^{v} \psi^{v}=0, \\
\nabla_{X^{h}}^{h} f^{h}=\left(\nabla_{X} f\right)^{h}, \quad \mathcal{T}^{1}\left(f^{h} X, I_{1} Y\right)=\left(T^{\nabla}\left(f X, I_{1} Y\right)\right)^{h}, \quad \mathcal{T}^{2}\left(\varphi^{v} X, I_{2} Y\right)=0,
\end{gathered}
$$

where $\mathcal{T}^{1}=\left.H \circ \mathcal{T}\right|_{H E}$ and $\mathcal{T}^{2}=\left.V \circ \mathcal{T}\right|_{V E}$. So we obtain
Proposition 4.2. The diagonal lift \mathcal{D} on E, for the connections ∇ on M and D on ξ, is the canonical connection associated to the mem-structure (J, G) if and only if

$$
\nabla f=0, \quad \nabla g=0, \quad T^{\nabla}(f X, Y)=T^{\nabla}(X, f Y)
$$

i.e., the connection ∇ is the canonical connection $[2,10]$ associated to the almost para-Hermitian (resp. indefinite almost Hermitian) structure (f, g) on M.

Also from (4.3) and (4.4) we obtain $\mathcal{D} G=0$ and $\mathcal{T}=0$ if and only if $\nabla g=0$, $T^{\nabla}=0, R^{D}=0$ and $D \psi=0$. Hence we have

Proposition 4.3. The diagonal lift \mathcal{D} of the pair of connections (∇, D) coincides with the Levi-Civita connection of G if and only if ∇ is the Levi-Civita connection of g, D has vanishing curvature and ψ is covariant constant.

For the Nijenhuis tensor of J,

$$
N_{J}(A, B)=[J A, J B]+J^{2}[A, B]-J[J A, B]-J[A, J B], \quad A, B \in \mathfrak{X}(E),
$$

we obtain

$$
\begin{aligned}
& \text { (4.5) } N_{J}\left(X^{h}, Y^{h}\right)=N_{f}(X, Y)^{h}+\gamma\left(\varepsilon R_{X Y}^{D}-R_{f X f Y}^{D}+\varphi \circ\left(R_{f X Y}^{D}+R_{X f Y}^{D}\right)\right), \\
& N_{J}\left(X^{h}, u^{v}\right)=\left(D_{f X} \varphi u-\varepsilon D_{X} u-\varphi \circ\left(D_{f X} u+D_{X} \varphi u\right)\right)^{v}, \quad N_{J}\left(u^{v}, w^{v}\right)=0 .
\end{aligned}
$$

It follows
Proposition 4.4. The mem-structure J is integrable (i.e., $N_{J}=0$, see [8]) if and only if f is a product (resp. a complex) structure in M, the connection D has vanishing curvature and the complex (resp. product) structure φ on ξ is covariant constant.

For the exterior differential of the 2-form Ω associated to the mem-structure (J, G) we obtain

$$
\begin{gathered}
d \Omega\left(X^{h}, Y^{h}, Z^{h}\right)=d \omega(X, Y, Z)^{v}, \quad 3 d \Omega\left(X^{h}, Y^{h}, w^{v}\right)=-\gamma\left(i_{w} \tau \circ R_{X Y}^{D}\right), \\
3 d \Omega\left(X^{h}, u^{v}, w^{v}\right)=D_{X} \tau(u, w)^{v}, \quad d \Omega\left(u^{v}, v^{v}, w^{v}\right)=0 .
\end{gathered}
$$

Hence

Proposition 4.5. The almost symplectic structure Ω associated to the memstructure (J, G) on E is integrable (i.e., $d \Omega=0$) if and only if the structure (f, g) is almost para-Kähler (resp. indefinite almost Kähler), the connection D has vanishing curvature, and the 2 -form τ on ξ is covariant constant.

Finally we obtain
Proposition 4.6. For the mem-structure (J, G) on E, the structures J and Ω are simultaneously integrable if and only if the structure (f, g) is a para-Kähler (resp. indefinite Kähler) structure on M, D has vanishing curvature and the pair (φ, ψ) is covariant constant.

References

[1] V. Cruceanu, Connexions compatibles avec certaines structures sur un fibré vectoriel banachique, Czechoslovak Math. J. 24 (1974) 126-142.
[2] V. Cruceanu, A new definition for certain lifts on a vector bundle, An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi 42 (1996) 59-73.
[3] V. Cruceanu \& F. Etayo, On almost para-Hermitian manifolds, Algebras Groups Geom. (to appear in 1999).
[4] V. Cruceanu, P. Fortuny \& P.M. Gadea, A survey on Paracomplex Geometry, Rocky Mountain J. Math. 26 (1996) 83-115.
[5] F. Etayo \& E. Reyes, Normality and structure transfer in $\left(J^{4}=1\right)$-manifolds, Rend. Sem. Fac. Sci. Univ. Cagliari 62 (1992) 1-7.
[6] J.M. Hernando \& P.M. Gadea, Sobre ciertas estructuras polinómicas, Act. VII Jornadas Hisp.-Lusit., S. Feliu de Guixols, vol. 1, 173-176 (1980).
[7] J.M. Hernando, P.M. Gadea \& A. Montesinos Amilibia, G-structures defined by a tensor field of electromagnetic type, Rend. Circ. Mat. Palermo (2) 34 (1985) 202-218.
[8] J.M. Hernando, E. Reyes \& P.M. Gadea, Integrability of tensor structures of electromagnetic type, Publ. Inst. Math. (Beograd) (N.S.) 37 (1985) 113-122.
[9] V. Hlavatý, Geometry of Einstein's unified field theory, P. Noordhoff, 1958.
[10] S. Kobayashi \& K. Nomizu, Foundations of Differential Geometry, Intersc. Publ., 1963 and 1969.
[11] R.S. Mishra, Structures in electromagnetic tensor fields, Tensor (N.S.) 30 (1976) 145-156.
[12] R. Miron \& M. Anastasiei, Vector bundles and Lagrange spaces with applications in Relativity, Balkan Soc. Geom. Monographs and Textbooks, n. 1, 1998.
[13] E. Reyes, A. Montesinos Amilibia \& P.M. Gadea, Connections making parallel a metric ($J^{4}=1$)-structure, An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi 28 (1982) 49-54.
[14] E. Reyes, A. Montesinos Amilibia \& P.M. Gadea, Connections partially adapted to a metric $\left(J^{4}=1\right)$-structure, Colloq. Math. 54 (1987) 216-229.

[^0]
[^0]: Authors' addresses:
 Encarna Reyes Iglesias: Department of Mathematics, E.T.S. of Architecture, University of Valladolid, Av. de Salamanca s/n, 47014-Valladolid, Spain. ereyes@cpd.uva.es Vasile Cruceanu: Department of Mathematics, University "Al. I. Cuza", 6600-Iaşi, Romania. cruv@uaic.ro
 Pedro Martínez Gadea: Institute of Mathematics and Fundamental Physics, CSIC, Serrano 123, 28006-Madrid, Spain. pmgadea@iec.csic.es

