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Abstract

Structures of electromagnetic type on a vector bundle are introduced
and studied. The metric case is also defined and studied. The sets of com-
patible connections are determined and a canonical connection is defined.

1 Introduction

Structures of electromagnetic type (em-structures) and structures of metric elec-
tromagnetic type (mem-structures) on a manifold were progressively introduced
in [9, 11, 7] (see also [6]) and studied in detail in [5, 7, 8, 13, 14]. In the present
paper we define similar structures for the case of a vector bundle £ = (E, 7, M),
and relate them to product, complex, para-Hermitian, Hermitian, para-K&hler
or indefinite Kéhler, structures. (In the sequel, by a pseudo-Riemannian met-
ric we shall understand a metric of any signature, and by an indefinite (met-
ric) structure a structure including a pseudo-Riemannian metric.) Then, we
determine the set of connections on ¢ compatible with those structures and
we introduce a canonical connection. Considering an almost para-Hermitian
(resp. indefinite Hermitian) structure on the base manifold M and an indefinite
Hermitian (resp. para-Hermitian) structure of the bundle &, we prove that the
corresponding diagonal lift of these structures, with respect to a connection on
¢, are mem-structures on the total space E. Finally, some properties of those
mem-structures are established.

We recall the physical origin of the topic ([9, 11]). Let M* be a spacetime of
general relativity, with gravitational tensor g of signature —+-++. Let F' be the
electromagnetic field of type (0,2), which is skewsymmetric, that is a 2-form.
Setting FI(X,Y) = g(JX,Y), the tensor field J so defined is the electromagnetic
tensor field of type (1,1) associated to F.. We have g(JX,Y) + g(X,JY) = 0.
The characteristic equation of J is det(J — AI) = 0, which is satisfied by J, and
we have

1
J*+2kJ? +11 =0, k= — trace J?, 1=detJ.
If z € M*, it is said that .J, is of 1%, 274, or 3" class at z if, respectively,

20, 1,=0, ks #£0, 1, =0, ky=0.



It is said that J is of 1%%, 27 or 3" class if it is of such class at every z. The
characteristic polynomial of the second class is J?(J? + 2k), but the minimal
polynomial is J(J? + 2k), so that the condition J(J? + 2k) = 0 characterizes
the second class. The field of an electromagnetic plane wave is of 3¢ class. The
field of a moving electron is of 2"¢ class. More complicated fields belong to the
1%t class. The equation one gets from the minimal polynomial in the 1%¢ class is

(1.1) (J? = £2)(J* + h?) = 0.

with f, h nowhere-vanishing C> functions on M*. Such a tensor field J on a
general manifold M determines a G-structure on M.

To handle the nonconstant local cross-section situation corresponding to
(1.1), one can use the relationships among G-structures, related sections of
an associated bundle and functions of certain kind on M, as follows: Let
(P,7mp, M, H) be a principal bundle with group H, H x W — W a left action
of H on a manifold W, and (E =P xg W, g, M, W) the associated bundle. A
J-subset S of W with corresponding group G, a subgroup of H, is defined by
the conditions: (1) S C fixpoint set of G, (2) h € H, h(S)NS # 0 = h € G.
For instance, points are J-subsets with G the corresponding isotropy group.
A cross-section K of mp is a J-section if it can be locally represented as the
“product” of a cross-section o of mp and a S-valued function K, so that

K, =0, IN(x = equivalence class of (o, K,) in E.

Then K is globally defined, and the o generate a principal subbundle of P. K is
a constant J-section if and only if K is constant. Different sections can generate
the same subbundle, and in fact, every principal subbundle can be generated by
a constant J-section.

Now, let P be the principal bundle of frames over M, so that H = GL(n, R),
and let W be a real vector space. If J € W is given with the conditions stated
above, a J-section generates a J-structure with group G, which is a G-structure.
The tensor K has in principle variable components in adapted frames. This
is a slight generalization with respect to the usually considered G-structures,
given by tensors with constant components, which here correspond to constant
J-sections. Since every J-structure is generated by some constant J-section,
this generalization is useless for the study of the J-structure itself; but if the
emphasis shifts to the study of variable J-sections, the results are significant,
specially with respect to the parallelizability of the tensors.

In the particular case of a (1, 1) tensor field J satisfying (J2 — f2)(J? +h?) =
0, with characteristic polynomial (x — p)™ (x — p)™2(2? + ¢%)%, r1,72,8 > 1,
r1+ 712+ 25 =n =dim M, the J-subset consists of matrices of the form

plr,
_pIrg



and the structural group is G = GL(r1,R) x GL(r2,R) x GL(s,C). It is proved
([7]) that the G-structure defined by J above is also defined by a tensor field, say
again J, satisfying (J? — 1)(J2 + 1) = 0, that is, the relation J* = 1 considered
in the present paper.

Notice that the G-structure is exactly the same, not an associated or equiv-
alent one. In the 4-dimensional case the group reduces to G = GL(1,R) x
GL(1,R) x GL(1,C). It is also proved ([7]) that there exists an adapted Rie-
mannian metric so that the group can be reduced to G = O(r1) x O(r2) x U(s),
and in the 4-dimensional case to Zy x Zz x U(1), that is, essentially to the
unitary group U(1).

2 Structures of electromagnetic type on a vector
bundle

Let £ = (E, 7, M) be a C* vector bundle with total space E and projection
map 7 over a connected paracompact base manifold M. The rank of E is the
(common) dimension of the fibres. Let C*°(M) denote the ring of real functions,
TP (M) the C°°(M)-module of (p, g)-tensor fields, and 7 (M) the C'>°(M )-tensor
algebra of M. We respectively denote by 7P(£) and 7 (§) the C°°(M)-module
of tensor fields of type (p, ¢) and the C*°(M)-tensor algebra of the bundle &.

We recall that an almost product (resp. almost complex) structure on a
manifold M is defined by a tensor field J of type (1,1) satisfying J2 = I (resp.
J? = —I). An almost para-Hermitian (resp. indefinite almost Hermitian) struc-
ture on M is defined by a couple (J, g), given by an almost product (resp. almost
complex) structure J and a pseudo-Riemannian metric compatible with J in the
sense that g(JX,Y)+¢(X,JY) =0, X, Y € X(M); that is, as an anti-isometry
(resp. isometry). A para-Kéahler (resp. indefinite Kéhler) manifold is a manifold
M endowed with an almost para-Hermitian (resp. indefinite almost Hermitian)
structure such that the Levi-Civita connection of g parallelizes .J.

Definition 2.1. A structure of electromagnetic type on & = (E,w, M) is an
M-endomorphism J of ¢ satisfying

Jt=1,

with characteristic polynomial (z — 1)™ (z + 1)"2(2? + 1)*, where 1,72, s are
constants greater than or equal to 1 such that ry + ro + 2s = rank .

Setting P = J2, we have P? = I, so P is a product structure on ¢, admitting
J as a “square root”. Conversely, if P is a product structure admitting a “square
root” J, then J is an em-structure on £. Denoting by &; and & respectively the
+1 and —1 eigen-subbundles of P, it is easy to see that £; and & are invariant
by J and that J; = Jl|¢, defines a product structure of & and Jo = Jlg, a
complex structure of ;. So, one has

(2.1) £=§& D &, J=J1® Jo.



Conversely, if £&; and &5 are two supplementary subbundles of £, J; is a product
structure of &, and J; a complex structure of &, then J = J; & J3 is an
em-structure on £. Denoting by P, and P» the projections of £ on & and &
respectively, we obtain

P:P1—P2, J:J10P1—|—J20P2.
Summing up we have

Proposition 2.1. An em-structure on the vector bundle £ = (E, 7, M) can be
defined by each one of the following conditions:

(1) An M-endomorphism J of £ satisfying J* = I,

(2) A product structure P of & admitting a “square root” J,

(3) Two supplementary subbundles & and &o of & respectively endowed with
a product structure and a complex structure.

Remark 2.1. A product structure P which admits a “square root” is a particular
one because rank £ must be even.

Definition 2.2. A structure of metric electromagnetic type (mem-structure)
on the vector bundle £ is a pair (J,g), where J is an em-structure and g a
pseudo-Riemannian metric on £ satisfying the compability condition

(2.2) g(JX,Y)+g(X,JY)=0, X, Y€C

Denoting by d§; the derivation defined by J in the tensor algebra 7 (£), the
relation (2.2) can be written as

dr9 =0,

from which it follows g(PX, PY) = g(X,Y), X,Y € X(M). Therefore, the pair
(P, g) is a pseudo-Riemannian product structure of £ and so the subbundles &;
and & are mutually orthogonal with respect to g. Denoting respectively by g1
and go the restrictions of g to & and &, from (2.2) we obtain

(23) 5Jlgl = Oa 5J292 = Oa

which may be written
(2.4)
g1 (N X, NhX) =-q(X)Y), g2(f2X, oY) = g2(X,Y), X, Y € X(§).

Hence (J1,g1) is a para-Hermitian structure of & and (Jz2, ¢2) is an indefinite
Hermitian structure of &. Conversely, if & and & are two supplementary
subbundles of £ such that &; is endowed with a para-Hermitian structure (J1, g1)
and & with an indefinite Hermitian structure (Jz, g2), then considering J as
given by (2.1) and setting

9= g1 D g2,

one obtains a mem-structure on £. So we have



Proposition 2.2. A mem-structure (J, g) on & is equivalent to a pair of sup-
plementary subbundles & and & respectively endowed with a para-Hermitian
structure (J1,g1) and an indefinite Hermitian structure (Jz, g2).

Remark 2.2. If (J, g) is a mem-structure on £, then we have: rank &; and rank &,
are even; trace J; = trace Jo = 0; signg; = 0.

Setting for a mem-structure (J, g) on &:
QX Y)=9(JX)Y), Q(X)Y)=¢(J;X,Y), i1=1,2,

it follows that €, Q;, and Q9 are 2-forms which determine almost symplectic
structures of &, & and &s, so that

Q=0 & Q.
These 2-forms satisfy
(2.5) 070 =0, 05,1 =0, 07,22 = 0.

Remark 2.3. The meaning of conditions (2.2), (2.3) and (2.5) is the following:
The groups of automorphisms of X(&1), X(&2), and X(§) given by

oy = Iy cosht + Jysinht, [y = Iscost+ Josint, v = ay ® S,

t € R, determine actions on the tensor algebras 7 (&1), 7 (£2), and 7 (§), which
respectively preserve the structures (Ji, g1,Q1), (Jo2, g2, Q2), and (J, g, Q).

3 Compatible connections

3.1 The general case

Definition 3.1. A connection D on the vector bundle € is said to be compatible
with an em-structure J if

(3.1) DJ =0.

From this it follows DP = 0, hence D preserves the subbundles &; and &, i.e.,
for X € X(M), Y1 € X(&1), Yo € X(&2), one has DxY; € X(&), DxYs € X(&2).
Setting then

DxY1 = DxYy, DXYs = DxYa, X e X(M), Y1 € X(&), Y2 € X(&2),
we have that D! and D? are respectively connections on &; and &2, so that
(32) Dx=DYoP +D%oP,, D%Ji=0, DxJ=0, XecXM).

Conversely, if D' and D? are respectively connections on &; and &, then D
given as in (3.2) is a connection on ¢ satisfying DP = 0. If D; and D5 satisfy
the respective conditions in (3.2), then D satisfies (3.1) too. Thus, it follows



Proposition 3.1. A connection D on £ is compatible with the em-structure J
if and only if there exist two connections D' on & and D? on &, respectively
compatible with the product structure J; and the complex structure Ja, so that

(33) D:D10P1+D2OP2.
Consider now on the subbundles &; of £, the operators ® 5, and ¥, given by
(3:4) (25, D")x = 3(Dx +J; 'oDxoJ;), (W, A")x = §(Ax +J; oAk 0 Jy),

where X € X(M), D' is a connection on &;, and A" € A} (M) ® X(&) @ AY&)
(now and in the sequel we take i = 1,2). From [1, 13] and Proposition 3.1 we
obtain

Proposition 3.2. The set of connections on & compatible with the em-structure
J is given by

Dx ={(®;,DV)x + (W5, A)x}o P + {(21,D°%)x + (¥, A%)x} o Py,

where X € X(M) and D° is an arbitrary fived connection on &;, A denotes
any element of A1(M) @ X(&) ® AY(&;), and @4, W, are given by (3.4).

Definition 3.2. A connection D on ¢ is said to be compatible with the mem-
structure (J, g) if
DJ =0, Dg =0,

From which it follows: DP = 0; D = D' o P, 4+ D? o P,, where D’ are the
restrictions of D to & and &; D'J; = 0; and Dig; = 0. Conversely, if D! and
D? are connections on &; and &, compatible with the para-Hermitian structure
(J1,91) and the indefinite Hermitian structure (Jz,g2) respectively, then the
connection D given by (3.3) is compatible with the mem-structure (J, g) on &.
So, we have

Proposition 3.3. A connection D on £ is compatible with the mem-structure
(J,9) on &, if and only if there are two connections D' and D? on the subbundles
&1 and &, respectively compatible with the para-Hermitian structure (J1, g1) and
the indefinite Hermitian structure (Jz, g2), so that D is given by (3.3).

Setting then
(3.5) (@4, D")x = 5(Dx +g; ' oDy 0gi), (Vg A')x = 5(Ax +g; ' oAy 0g:),
we obtain from [1], Prop. 3.3, and (2.4)
Proposition 3.4. The set of connections on & compatible with the mem-struc-
ture (J, g) is given by
Dx = {((®g, © s, ) D" )x + (T, 0 ¥y, ) A )x } 0 P1
+ {(((I)gz o (I)J2>DO2)X + ((‘Ilgz © \IJJz)A2)X} o P2a

where D° is an arbitrary fived connection on &, A € AY(M) @ X(&) @ AY(&),
and @5, 4., Uy, Uy, are given by (3.4) and (3.5).



3.2 The case of the tangent bundle

We now consider the case of £ being the tangent bundle of the manifold M, i.e.,
&= (TM,n, M). In this case, for a mem-structure (J, g) on M, the pair (P, g) is
a pseudo-Riemannian almost product structure on M, and (J1, ¢1), (J2, g2), are
respectively a para-Hermitian [4] and an indefinite Hermitian structure [10] on
& and &. If V is a linear connection on M, compatible with P, i.e., VP = 0,
then its restrictions V! and V2 to & and & are connections on these subbundles.
If T is the torsion tensor of V, we shall call torsion tensor of V' to the tensor
fields T given by T = P; o T|,, or in more detail

We call tensors of nonholonomy of the distributions &; and &» to the tensor
fields S' = P, o T'|¢, and S? = Py o T, respectively. We obtain

SYX1, Y1) = —P[X4, Y1), 5*(X2,Ys) = —Pi[Xo, Ya).
It follows

Proposition 3.5. The distribution & (resp. &) is involutive if and only if
St = 0 (resp. S? =0).

After some computations we obtain from [3, 10, 14]

Proposition 3.6. For a mem-structure (J, g) on a manifold M, there exists a
unique linear connection V with torsion tensor T, satisfying the conditions

(3.6) VP=0, T(PX,Y)=T(X,PY),
(3.7) Vi, Ji=0, V% gi=0, T'(LXLY)=T(LX,JY).
Definition 3.3. We shall call the canonical connection associated to the mem-

structure (J,g) on the manifold M to the connection given by the conditions
(3.6) and (3.7).

Remark 3.1. Notice that this connection slightly differs from that given in The-
orem 5.3 in [14].
For the canonical connection we obtain from (3.6):

Vi, Y1 =Pi[Xy, Y1), V%, Yz = P[X),Ya).

Denoting by &1, €2 the eigen-subbundles of J; corresponding to e = +1, ¢ = —1,
by 7}, 73 the projection maps of &; on &}, and &7 and by X3, Y{ any elements
of X(&}), we obtain from the first equation in (3.7)
VY] =mPIXL Y, Vi Y =aiPiX], Y7,
(Vi i, 22) = Xl (Vi 22) - u (XL 220, V),
(Vi Y2, 21) = X2 (V2. 21) - u (X2, 211, Y2).



From the second equation in (3.7) above it results, exactly as in [14, Th. 5.1],
the expression for V%, Ya.
For J and g we obtain

(Vx, )1 =0, (Vx,J)Yoa=0, (Vx,J)Yz = (V5 J2)Y2,
(sz J)}/l = (V}lel)}/la (VX19>(}/1a Zl) =0, (VX29>(}/2a ZQ) =0,
(Vng)(}/l; Zl) = (Lng)(}/l; Zl)a (VX19>(}/2a ZQ) = (Lxlg)(}/25 Z2)a

where L stands for the Lie derivative.

4 Structures of electromagnetic type on the to-
tal space of a vector bundle

Let £ = (E,m, M) be a vector bundle and (27), (y*), (27,y%), local coordinates
in adapted charts on M, £, and E, respectively. We denote by (9;), (ea), (95, 0a)
the corresponding local bases, where d; = 9/0z7, 0, = 0/0y*, j =1,2,...,m,
a,b,c =1,2,...,n (see [2]). Setting for each z = (x,y) € E, V.E = Ker m,.,
we obtain the vertical distribution and so the vertical subbundle of TE, denoted
by VE. Let C®¥ = {f¥ = fon: f € C®°(M)} be the subring of C*(E)
naturally isomorphic to C°°(M). Setting for each p € Al(£), locally given by
() = pa(z)e”,

V() (2) = pa(@)y",
we obtain a class of functions on E enjoying the property that every vector field
A € X(F) is uniquely determined by its values on those functions. The mapping
v may be extended to tensor fields S € 7;}(¢) by

() (v(w) =v(poS),  pe A ().

If S(x) = S¢(x)eq @ e®, then vS(2) = S (x)y’ Dy, i.e., ¥S is a vertical vector
field on E. Now, let D be a connection on ¢ and X € X(M), u € X(£). Setting

X"(yp) =v(Dxp), w’(yp) = p(u)om,  pe A (E),

we obtain two vector fields X" and ¥ on E, respectively called the horizontal
lift of X and the vertical lift of u. We have the useful formulas [2]:

(fX)h = vaha (fu)v = fvuv, [Xhayh] = [Xa Y]h _FYR)’%Ya [uv,wv] =0,
(X" u] = (Dxu)", fEC®(M), X,Y € X(M), u,w € X(£).
Now, putting
QX" =X" Q') =-X", XeX(M),ueX®),

we obtain an almost product @ structure on E whose +1 and —1 eigendistribu-
tions, are respectively called the horizontal distribution HE of the connection
D and the vertical distribution V E of the bundle.



For f € TM(M), p € T} (€), g € Ta(M), o € T5(€), we define the horizontal
lift or the vertical lift f*, ¢V, g, 1", respectively by

(4.1) fh(Xh) FXO", ) =0, ¢"(X") =0, ¢"(u’)=pu)",
XY =X, Y)Y, gM(X ) = gt (), XM = g
1Z)v()(h ) 1/)v()(h v) _ wv(uv, Yh) _ 0, wv(uv,wv
X,Y € X(M), u,w € X(£).

We then define the diagonal lifts J and G for the pairs (f, ¢) and (g, 1) by
(4.2) J=M+e’, G=g"+y".
From (4.1) and (4.2) we have
JUX") = (1), JM) = (9" (W), neN-

So J* = I, that is J is an em-structure on E, if and only if f* = I and ¢* = I,
that is, either f and ¢ are both em-structures or one is an em-structure and the
other an almost product or almost complex structure, or finally f is an almost
product (resp. almost complex) and ¢ is a complex (resp. product) structure on
M and € respectively. In the sequel we only consider the last case.

Hence, let J be an em-structure on the total space E of £ given by the
diagonal lift in the first equation in (4.2) of an almost product (resp. almost
complex) structure f on the base manifold M and a complex (resp. product)
structure ¢ on the bundle £, that is, which satisfy

f2:5‘[1, <P2:_EI2’ 5‘:1 (I‘esp, 5‘:—1),

with respect to a connection D on £. For the almost product structure P
associated to J, we obtain P = €@, that is, P coincides up to the sign with the
almost product structure () above associated to D.

Now, let G be the diagonal lift in the second equation in (4.2), with respect
to D, for the pair (g,%) of metrics on M and &. From (4.2) we obtain

5,G = (579)" + (6,0)",
and so ;G = 0 if and only if 6yg = 0 and 0,79 = 0. It follows

Proposition 4.1. The pair (J, G) of diagonal lifts, with respect to a connection
D on &, of an almost product (resp. almost complex) structure f on M and a
complex (resp. product) structure p of £, and the nondegenerate metrics g on M
and Y on &, is a mem-structure on the total space E of £ if and only if the pair
(f,9) is an almost para-Hermitian (resp. indefinite almost Hermitian) struc-
ture on M. The pair (p,) is an indefinite Hermitian (resp. para-Hermitian)
structure on &.



Denoting by w and 7 the 2-forms associated to the structures (f, g) on M and
(p,1) on &, and by Qy, Q, Q, the 2-forms associated to the structures (f", g")
on HE, (¢¥,4") on VE and (J,G) on TE, we obtain

0 =Wl Qo =7", Q=wer.
From the hypotheses of Prop. 4.1 it follows
5fg:0, 5fw:0, 5@1/):0, (ipTZO, 5JG:0, 5JQ:0.

Remark 4.1. The groups of automorphisms of X(M), X(£), X(E), given respec-
tively for e =1 and € = —1, by
oy = Iy coshit + fsinht, [y = Iycost+ psint, v = a? @6?, t e R,
oy = Iy cost + fsint, [y = Iycosht+ psinht, v = a? @6?, t € R,
determine on the tensor algebras 7 (M), 7 (§), and T (E), actions which preserve
the structures (f, g,w), (v, %, 7) and (J, G, Q).

For two connections V on M and D on &, we define the horizontal lift V"
on the subbundle HE and the vertical lift DY on the subbundle VE (each one
with respect to the connection D), respectively by

Vi Yt = (VxY)', vhY'=0, D%.w'=(Dxw)", Di.w’=0.
Putting them
DaX =Vi4HX +DYVX, A XeX(E),

where H and V denote the horizontal and vertical projectors of TE on HE
and V E, we obtain a linear connection D on FE, called the diagonal lift of the
pair (V, D) with respect to the connection D (see [2]), whose restrictions to
the subbundles ¢&; = HE and & = VE are D; = V" and Dy = DV. The
nonvanishing components of the torsion and curvature tensors of D are given

by
(4.3) T(X" ") = TV (X, V)" + 1R,
RxnynZ" = (RYyZ)", Rxnyru’ = (RRyu)’,
where TV, RV, and RP stand for the torsion tensor of V and the curvature
tensors of V and D.

For the covariant derivatives, with respect to D, of the horizontal lift of f
and g, and the vertical lift of ¢ and v we obtain

Dthh:(VXf)ha Duvfh:(), Dthh:(VXg)ha Duvghzo,
Dxmpv = (wa)v, Duvwv = 0, DXM/JU = (D)ﬂ/))v, Duﬂ/)v =0.

10



So, for the diagonal lifts J and G of the pairs (f, ¢) and (g, 1), it follows
(4.4) Dxnd = (Vx )"+ (Dx¢)’,  Duwd =0,
DynG = (Vxg)" + (Dxv¢)’,  DuG =0.

Hence, DJ = 0 if and only if Vf = 0, Dy = 0; and DG = 0 if and only if
Vg =0, Dy = 0. From (4.3) and (4.4) it follows, for P = J2, that DP = 0 and
ToPxI=Tolx P for any connections V on M and D on £. After that we
have

Vf)l(hgh = (ng)ha DZ’L’(/DU = Oa Dszv = Oa
Vi " = (Vx)t THX LY) =TV (X, LY)", T*(¢"X, LY) =0,
where 7! = Ho T |gg and 72 =V o T|yg. So we obtain

Proposition 4.2. The diagonal lift D on E, for the connections V on M and
D on &, is the canonical connection associated to the mem-structure (J, Q) if
and only if

Vf=0, Vg=0, TV(fX,Y)=TY(X,fY),

i.e., the connection V is the canonical connection [2, 10] associated to the almost
para-Hermitian (resp. indefinite almost Hermitian) structure (f,g) on M.

Also from (4.3) and (4.4) we obtain DG = 0 and 7 = 0 if and only if Vg = 0,
TV =0, RP = 0 and Dty = 0. Hence we have

Proposition 4.3. The diagonal lift D of the pair of connections (V, D) coin-
cides with the Levi-Civita connection of G if and only if V is the Levi-Civita
connection of g, D has vanishing curvature and v is covariant constant.

For the Nijenhuis tensor of .J,
N;(A,B) = [JA,JB]+ J?[A,B] — J[JA,B] — J|A,JB],  A,B¢€ X(E),
we obtain
(4.5) Nj(X",Y") = Np(X,Y)" +4(eRRy — Rfxsy + 0o (Rfxy + RRpy)),
Ny (X", u") = (Dyxpu—eDxu— o (Dsxu+ Dxepu))’, Ny(u’,w’)=0.
It follows

Proposition 4.4. The mem-structure J is integrable (i.e., Ny = 0, see [8])
if and only if f is a product (resp. a complex) structure in M, the connection
D has vanishing curvature and the complex (resp. product) structure ¢ on & is
covariant constant.

For the exterior differential of the 2-form ) associated to the mem-structure
(J,G) we obtain

dQ(X",Y", 72" = dw(X,Y, Z)°, 3dQUX"™, Y™ w¥) = —7(i,T 0 REy),
3dQUX" u’ w’) = Dx7(u, w)?, dQ(u’, v’ w?) = 0.

Hence
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Proposition 4.5. The almost symplectic structure ) associated to the mem-
structure (J,G) on E is integrable (i.e., d = 0) if and only if the structure
(f,9) is almost para-Kdahler (resp. indefinite almost Kdhler), the connection D
has vanishing curvature, and the 2-form 7 on & is covariant constant.

Finally we obtain

Proposition 4.6. For the mem-structure (J,G) on E, the structures J and
are simultaneously integrable if and only if the structure (f,g) is a para-Kdahler
(resp. indefinite Kdhler) structure on M, D has vanishing curvature and the
pair (p, 1)) is covariant constant.

References
[1] V. Cruceanu, Connezions compatibles avec certaines structures sur un fibré vec-
toriel banachique, Czechoslovak Math. J. 24 (1974) 126-142.

[2] V. Cruceanu, A new definition for certain lifts on a vector bundle, An. Stiint.
Univ. “Al. I. Cuza” lasi 42 (1996) 59-73.

[3] V. Cruceanu & F. Etayo, On almost para-Hermitian manifolds, Algebras Groups
Geom. (to appear in 1999).

[4] V. Cruceanu, P. Fortuny & P.M. Gadea, A survey on Paracompler Geometry,
Rocky Mountain J. Math. 26 (1996) 83-115.

[5] F. Etayo & E. Reyes, Normality and structure transfer in (J* = 1)-manifolds,
Rend. Sem. Fac. Sci. Univ. Cagliari 62 (1992) 1-7.

[6] J.M. Hernando & P.M. Gadea, Sobre ciertas estructuras polindmicas, Act. VII
Jornadas Hisp.-Lusit., S. Feliu de Guixols, vol. 1, 173-176 (1980).

[7] J.M. Hernando, P.M. Gadea & A. Montesinos Amilibia, G-structures defined by
a tensor field of electromagnetic type, Rend. Circ. Mat. Palermo (2) 34 (1985)
202-218.

[8] J.M. Hernando, E. Reyes & P.M. Gadea, Integrability of tensor structures of
electromagnetic type, Publ. Inst. Math. (Beograd) (N.S.) 37 (1985) 113-122.

[9] V. Hlavaty, Geometry of Einstein’s unified field theory, P. Noordhoff, 1958.

[10] S. Kobayashi & K. Nomizu, Foundations of Differential Geometry, Intersc. Publ.,
1963 and 1969.

[11] R.S. Mishra, Structures in electromagnetic tensor fields, Tensor (N.S.) 30 (1976)
145-156.

[12] R. Miron & M. Anastasiei, Vector bundles and Lagrange spaces with applications
in Relativity, Balkan Soc. Geom. Monographs and Textbooks, n. 1, 1998.

[13] E. Reyes, A. Montesinos Amilibia & P.M. Gadea, Connections making parallel a
metric (J* = 1)-structure, An. Stiint. Univ. “Al 1. Cuza” Tasi 28 (1982) 49-54.

[14] E. Reyes, A. Montesinos Amilibia & P.M. Gadea, Connections partially adapted
to a metric (J* = 1)-structure, Colloq. Math. 54 (1987) 216-229.

12



Authors’ addresses:

Encarna Reyes Iglesias: Department of Mathematics, E.T.S. of Architecture, Univer-
sity of Valladolid, Av. de Salamanca s/n, 47014-Valladolid, Spain. ereyes@cpd.uva.es
Vasile Cruceanu: Department of Mathematics, University “Al. I. Cuza”, 6600-Iasi,
Romania. cruv@uaic.ro

Pedro Martinez Gadea: Institute of Mathematics and Fundamental Physics, CSIC,

Serrano 123, 28006-Madrid, Spain. pmgadea@iec.csic.es

13



