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Abstract. We study the equivalence of an almost product bicomplex (apbc)-structure
with other important structures on a manifold, metrics and linear connections compatible
with such a structure and the integrability of the apbc-structures. Finally, we give an
example of an apbc-structure on the tangent bundle of an almost Hermitian manifold.
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1. Introduction. The almost product bicomplex (apbc)-structures,
together with other important structures on a manifold, were considered by
Libermann [9], Hsu [7], Cruceanu [3], Maksym and Zmurek [10] and
others. But a more complete and consistent analyze of these structures was
made by Bonome, Castro, Garcia-Rio, Hervella and Matsushita in the joint
paper [2].

In this work we study the equivalence of an apbc-structure with other
important structures on a manifold, metrics and linear connections compati-
ble with such a structure and the integrability of the metric apbc-structures.
An example of a Riemannian apbc-structure on the total space of the tan-
gent bundle to an almost Hermitian manifold is also analyzed.

2. Almost product bicomplex structures. Let M be a paracom-
pact and connected C∞-manifold, F(M) the ring of real functions, Dr

s(M)
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the F(M)-module of (r, s)-tensor fields and D(M) the F(M)-tensor algebra
on M .

Definition 2.1. An almost product bicomplex (apbc)-structure on the
manifold M , is a triple (F, G, H) of (1, 1)-tensor fields which satisfies the
conditions

(2.1) −F 2 = G2 = H2 = F ◦G ◦H = −I, F 6= ±I.

It follows that F is an almost product (ap)-structure and G,H are al-
most complex (ac)-structures on M , which satisfy the relations

(2.2) F ◦G = G◦F = H, G◦H = H◦G = −F, H◦F = F ◦H = G,F 6= ±I.

Denote by V1 = F+ and V2 = F−, the eigendistributions (or subbundles
of TM), corresponding to eigenvalues ±1 and by F1 and F2 the associated
projectors to F , i.e.

(2.3) F1 =
I + F

2
, F2 =

I − F

2
.

Setting then

(2.4) ϕ1 = G ◦ F1, ϕ2 = G ◦ F2,

one obtains

(2.5)
ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1 = 0, ϕ2

1 = −F1, ϕ2
2 = −F2,

ϕ2
1 + ϕ2

2 = −I, ϕ3
1 + ϕ1 = ϕ3

2 + ϕ2 = 0.

Definition 2.2. An almost cocomplex (acc)-structure on M is a (1, 1)-
tensor field ϕ satisfying ϕ3 + ϕ = 0. Two (acc)-structures ϕ1 and ϕ2 are
supplementary if ϕ2

1 + ϕ2
2 = −I.

From (2.4) and (2.5) we obtain

(2.6) F = ϕ2
2 − ϕ2

1, G = ϕ1 + ϕ2, H = ϕ1 − ϕ2.

Then, from (2.2) it follows that G and H preserve the distributions V1

and V2 and so, putting ϕ′1 = G/V1, ϕ
′
2 = G/V2, one has ϕ′1

2 = −I1, ϕ
′
2
2 =

−I2, i.e. ϕ′1 and ϕ′2 are complex structures on V1 and V2 respectively.
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Definition 2.3. An almost CR-structure [1] on a manifold M is a pair
(D,J), where D is a distribution on M and J an almost complex structure
on D. Two almost CR-structures (D1, J1) and (D2, J2) are supplementary
if D1 and D2 are supplementary distributions on M .

It follows that (V1, ϕ
′
1) and (V1, ϕ

′
2) are supplementary almost CR-

structures on M and from (2.4) one has

(2.7) G = ϕ′1 ◦ F1 + ϕ′2 ◦ F2, H = ϕ′1 ◦ F1 − ϕ′2 ◦ F2.

From the previous considerations it results.

Theorem 2.1. An apbc-structure on the manifold M may be defined
by one of the following equivalent structures:

1) A triple formed by an ap-structure F and two ac-structures G and H
which satisfy F ◦G ◦H = −I, F 6= ±I.

2) A pair formed by an ap-structure F and an ac-structure G (or H),
which commute.

3) Two commuting ac-structures, G and H, with G 6= ±H.

4) Two supplementary acc-structures ϕ1 and ϕ2, with ϕ1 6= 0, I.

5) Two supplementary almost CR-structures (V1, ϕ
′
1) and (V2, ϕ

′
2).

V1 and V2 being complex distributions, it results dimV1 = 2n1, dimV2 =
2n2 and so dimM = 2(n1+n2). In particular, if F is an almost paracomplex
(apc)-structure [5], on M , i.e. F 2 = I, T rF = 0, then n1 = n2 = n and
hence dimM = 4n.

Definition 2.4. An adapted basis, for an apbc-structure (F, G, H) in
x ∈ M , is a basis (ei, en1+i, ea, en2+a), with ei ∈ V1, en1+i = G(ei), ea ∈
V2, en2+a = G(ea), i = 1, 2, . . . , n1, a = 1, 2, . . . , n2.

In an adapted basis, the tensor fields F, G,H, ϕ1 and ϕ2 have the ma-
trices

(2.8)

F =
[

I2n1 0
0 −I2n2

]
, G =

[
ϕ′1 0
0 ϕ′2

]
, H =

[
ϕ′1 0
0 −ϕ′2

]
,

ϕ1 =
[

ϕ′1 0
0 0

]
, ϕ2 =

[
0 0
0 ϕ′2

]
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with

(2.9) ϕ′1 =
[

0 −In1

In1 0

]
, ϕ′2 =

[
0 −In2

In2 0

]
.

The change of the adapted bases are given by matrices of the form

(2.10) T =
[

A 0
0 B

]
, with A =

[
a −b
b a

]
, B =

[
p −q
q p

]

and a + ib ∈ GL(n1,C), p + iq ∈ GL(n2,C).
It follows from here.

Theorem 2.2. The structural group of the tangent bundle of a manifold
M endowed with an apbc-structure is reducible to the real representation
Σ(2n1,R)× Σ(2n2,R) of the direct product GL(n1,C)×GL(n2,C).

3. Metric and symplectic structures compatible with an apbc-
structure. Let h be a metric structure on M and

(3.1)
g1 = h ◦ (I × I + F × F + G×G + H ×H), g2 = g1 ◦ I × F,

ω1 = g1 ◦ I ×G, ω2 = g1 ◦ I ×H.

One obtains

(3.2)
gα ◦ F × F = gα ◦G×G = gα ◦H ×H = gα,

ωα ◦ F × F = ωα ◦G×G = ωα ◦H ×H = ωα, α = 1, 2,

i.e. gα are metric and ωα are almost symplectic structures on M , compatible
with the apbc-structure (F, G,H).

In particular, if h is a Riemannian structure then g1 is also Riemannian
and g2 is pseudo-Riemannian structure of signature (n1, n2).

Denoting then

(3.3) γ′1 = g1/V1 × V1, γ′2 = g2/V2 × V2,

we obtain two metrics γ′1 on V1 and γ′2 on V2, which are Riemannian in the
same time with g1 and satisfy

(3.4) γ′α ◦ ϕ′α × ϕ′α = γ′α, α = 1, 2.
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Considering

(3.5) ψ1 = ω1 ◦ F1 × F1, ψ2 = ω2 ◦ F2 × F2,

we obtain two degenerate 2-forms on M and we have

(3.6) ω1 = ψ1 + ψ2, ω2 = ψ1 − ψ2.

After that, setting:

(3.7) ψ′1 = ω1/V1 × V1, ψ′2 = ω2/V2 × V2,

one obtains two symplectic forms on V1 and V2, which satisfy

(3.8) ψ′α ◦ ϕ′α × ϕ′α = ψ′α, α = 1, 2.

Definition 3.1. We call the set (F, G,H, g1), which satisfy (2.1) and
(3.1), a metric almost product bicomplex (mapbc)-structure on M and
g2, ω1, ω2 the associated metric and almost symplectic structures.

Therefore, to a Riemannian mapbc-structure (F, G, H, g1) we will asso-
ciate the follows structures: the Riemannian ap-structure (F, g1) with the
associated pseudo Riemannian structure g2, the pseudo-Riemannian ap-
structure (F, g2) with the associated Riemannian structure g1, the almost
Hermitian structures (G, g1) and (H, g1) with the associated almost sym-
plectic structures ω1 and ω2 respectively, and the indefinit almost Hermitian
structures (G, g2) and (H, g2) with the associated almost symplectic struc-
tures ω2 and ω1 respectively. We will have also, on the distributions Vα,
the Hermitian structures (ϕ′α, γ′α) with the associated symplectic structures
ψ′α, α = 1, 2.

Definition 3.2. An adapted basis for the Riemannian mapbc-structure
(F,G, H, g1) is an adapted basis for the abpc-structure (F, G, H), which is
orthonormal with respect to g1.

In such a basis the matrices of g1, g2, ω1 and ω2 coincide with the ma-
trices of I, F,G, H respectively. From here and the Theorem 2.2, it follows

Theorem 3.1. The structural group of the tangent bundle for a mani-
fold M endowed with a Riemannian mapbc-structure is reducible to the real
representation SO(2n1)×SO(2n2) of the direct product U(n1,C)×U(n2,C).
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4. Connections compatible with an apbc-structure. For to give
a more geometrical character to our considerations, we will use from the
beginning the following important remark. If ∇0 is a fixed connection on
M , then for each connection ∇ there exists a single tensor field τ ∈ D1

2(M)
so that ∇ = ∇0 + τ. With other words, the set C(M) of linear connections
on M is an F(M)-affine module [4], associated to the F(M)-linear module
D1

2(M).
Considering now an ap-structure F on M and setting for∇ ∈ C(M), τ ∈

D1
2(M), X ∈ D1(M),

(4.1) ψF (∇)X =
1
2
(∇X + F ◦ ∇X ◦ F ), χF (τ)X =

1
2
(τX + F ◦ τX ◦ F ),

we get that ψF (∇) ∈ C(M), χF (τ) ∈ D1
2(M) and

(4.2) ψ2
F = ψF , χ2

F = χF , ψF (∇+ τ) = ψF (∇) + χF (τ).

It follows from here that ψF is the F(M)-affine projector on C(M) associ-
ated to the F(M)-linear projector χF on D1

2(M).

Definition 4.1. A linear connection ∇ on M is called compatible with
the ap-structure F ,or is a F -connection, if ∇F = 0.

From (4.1) and (4.2) it follows that ∇F = 0 is equivalent with ψF (∇) =
∇ and so with CF (M) = ImψF . Hence we have

Theorem 4.1. The set CF (M) of connection on M , compatible with
the ap-structure F , is the affine submodule of C(M) which coincides with
the image of the affine projector ψF .

Considering on C(M) the conjugation with respect to F , i.e. the auto-
morphism κF : C(M) → C(M) given by

(4.3) κF (∇)X = F ◦ ∇X ◦ F, ∀∇ ∈ C(M), X ∈ D1(M),

we obtain

(4.4) ψF (∇) =
1
2
(∇+ κF (∇)).

Hence κF is the affine symmetry of the affine module C(M), with re-
spect to affine submodule CF (M), made parallel with the linear submodule
Ker χF and ψF is the mean connection of ∇ and its conjugate χF (∇), with
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respect to F . We will call ψF (∇) the F -connection associated to ∇, with re-
spect to ap-structure F . Using the projectors F1 and F2, the F -connection
ψF (∇) may be also given by

(4.5) ψF (∇)X =
2∑

α=1

Fα ◦ ∇X ◦ Fα, X ∈ D1(M).

But being a F -connection, ψF (∇) preserves the subbundles V1, V2 and in-
duces on them the connections

(4.6)
α
∇XYα = Fα ◦ ∇XYα, X ∈ D1(M), Yα ∈ Vα, α = 1, 2.

and so we have

(4.7) ψF (∇)X =
2∑

α=1

α
∇X ◦ Fα.

Let ∇0 be a fixed connection on M . Since CF (M) = ImψF then, for
each connection ∇ ∈ CF (M), there exists ∇′ ∈ C(M) so that ∇ = ψF (∇′).
After that, there exists τ ∈ D1

2(M) so that ∇′ = ∇0 + τ. Therefore, ∇ =
ψF (∇0 + τ) and from (4.2) it results

Theorem 4.2. The set CF (M) of connections ∇ on M compatible with
the ap-structure F is given by

(4.8) ∇ = ψF (∇0) + χF (τ),

where ∇ is a fixed connection and τ an arbitrary (1.2)-tensor field on M .
With other words, CF (M) is the affine submodule of C(M) passing

through the F -connection ψF (∇0) and having the direction given by the
linear submodule ImχF of D1

2(M). Similarly considering an ac-structure G
on M and setting for ∇ ∈ C(M), τ ∈ D1

2(M) and X ∈ D1(M),

(4.9) ψG(∇)X =
1
2
(∇X −G ◦ ∇X ◦G), χG(τ)X =

1
2
(τX −G ◦ τX ◦G),

we obtain

(4.10) ψ2
G = ψG, χ2

G = χG, ψG(∇+ τ) = ψG(∇) + χG(τ).
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After that, for the set of G-connections and the conjunction with respect
to G, we have CG(M) = ImψG, κG(∇)X = −G ◦ ∇X ◦G and so,

(4.11) ψG(∇) =
1
2
(∇+ κG(∇)).

Finally, the affine submodule CG(M) of G-connections is given by

(4.12) ∇ = ψG(∇0) + χG(τ),

with fixed ∇0 ∈ C(M) and arbitrary τ ∈ D1
2(M).

Definition 4.2. A connection ∇ is called compatible with the apbc-
structure (F, G,H) or is a (F, G,H)-connection on M , if it satisfies

(4.13) ∇F = ∇G = ∇H = 0.

By an easy calculation we obtain

Theorem 4.3. A connection ∇ on M is a (F, G,H)-connection iff it
satisfies one of the following conditions:

1. ∇ is a (F, G) or a (G,H) or a (H, F )-connection,

2. ∇ is a (ϕ1, ϕ2)-connection,

3. There exist a ϕ′1-connection
1
∇ on V1 and a ϕ′2-connection

2
∇ on V2 so

that

(4.14) ∇X =
1
∇X ◦ F1 +

2
∇X ◦ F2, ∀X ∈ D1(M).

From the commutativity of the composition for F, G,H it follows the
commutativity for the composition of ψF , ψG, ψH ; of χF , χG, χH and of
κF , κG, κH . After that ψF and ψG being affine projectors associated to
linear projectors χF and χG it results that ψF ◦ ψG is the affine projector
associated to linear projector χF ◦ χG, i.e.

(4.15) ψF ◦ ψG(∇+ τ) = ψF ◦ ψG(∇) + χF ◦ χG(τ)

From here one obtains



9 ALMOST PRODUCT BICOMPLEX STRUCTURES ON MANIFOLDS 107

Theorem 4.4. The set CFGH(M) of connections compatible with the
apbc-structure (F, G,H) is given by

(4.16) ∇ = ψF ◦ ψG(∇0) + χF ◦ χG(τ),

with ∇0 ∈ C(M) fixed and τ ∈ D1
2(M) arbitrary.

Taking here τ = 0, it follows that an apbc-structure (F, G, H) assign
to each connection ∇0 ∈ C(M) a (F, G, H)-connection ∇ = ψF ◦ ψG(∇0)
which may be written also in the form

(4.17) ∇ =
1
4
(∇0 + κF (∇0) + κG(∇0) + κH(∇0)),

i.e. ∇ is the mean connection of ∇0 and its conjugate connections with
respect to F, G and H.

Now let g be a metric on M , considered as a mapping from D1(M)
to D1(M) which assigns to a vector field X the 1-form α given by α(Y ) =
g(X, Y ), for any vector field Y. Setting then, for ∇ ∈ C(M) and τ ∈ D1

2(M),

(4.18) ψg(∇)X =
1
2
(∇X + g−1 ◦∇X ◦ g), χg(τ)X =

1
2
(τX + g−1 ◦ τX ◦ g),

we obtain as for an ap-structure F , the following

Theorem 4.5. The set Cg(M) of connections on M compatible with a
metric g (i.e. ∇g = 0) are given by

(4.19) ∇ = ψg(∇0) + χg(τ),

with fixed ∇0 ∈ C(M) and arbitrary τ ∈ D1
2(M).

Definition 4.3. A connection ∇ is called compatible with a mapbc-
structure (F, G, H, g), or is a (F,G, H, g)-connection on M , if it satisfies

(4.20) ∇F = ∇G = ∇H = ∇g = 0.

For a (F,G, H, g1)-connection ∇ on M we have also

(4.21)
∇Fα = ∇ϕα = ∇g2 = ∇ωα = ∇ψα = 0,
α
∇ϕ′α =

α
∇γ′α =

α
∇ψ′α = 0, α = 1, 2.
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Using (2.2), we obtain for a mapbc-structure (F, G,H, g1), ψg1 ◦ ψF =
ψF ◦ψg1 , etc. χg1 ◦χF = χF ◦χg1 , etc and so for the connections compatible
with such a structure one obtains

Theorem 4.6. The set CFGHg1(M) of connections on M , compatible
with the mapbc-structure (F, G,H, g1) is given by

(4.22) ∇ = ψF ◦ ψG ◦ ψg1(∇0) + χF ◦ χG ◦ χg1(τ),

with fixed ∇0 ∈ C(M) and arbitrary τ ∈ D1
2(M).

In particular, taking here τ = 0 and ∇0 = ∇g1 or ∇0 = ∇g2 , i.e. the
Levi-Civita connections of the metrics g1 and g2, we obtain

Theorem 4.7. The connections Dα = ψF ◦ ψG(∇gα), α = 1, 2, as-
sociated to Levi-Civita connections of gα, are compatible with the mapbc-
structure (F, G,H, g1).

5. Integrability for the apbc-structure (F,G, H).
Considering the Nijenhus tensor for ϕ1, ϕ2, (ϕ1, ϕ2), F, G,H and taking

Xα ∈ Vα, α = 1, 2 we obtain

Nϕ1(X1, Y1) = [ϕ1X1, ϕ1Y1] + ϕ2
1[X1, Y1]− ϕ1[ϕ1X1, Y1]− ϕ1[X1, ϕ1Y1],

Nϕ1(X1, Y2) = ϕ1(ϕ1[X1, Y2]− [ϕ1X1, Y2]),

Nϕ1(X2, Y2) = ϕ2
1[X2, Y2] = −F1[X2, Y2],

Nϕ2(X1, Y1) = ϕ2
2[X1, Y1] = −F2[X1, Y1],

Nϕ2(X1, Y2) = ϕ2(ϕ2[X1, Y2]− [X1, ϕ2Y2]),

Nϕ2(X2, Y2) = [ϕ2X2, ϕ2Y2] + ϕ2
2[X2, Y2]− ϕ2[ϕ2X2, Y2]− ϕ2[X2, ϕ2Y2],

Nϕ1ϕ2(X1, Y1) = −ϕ2([ϕ1X1, Y1] + [X1, ϕ1Y1]),

Nϕ1ϕ2(X2, Y2) = −ϕ1([ϕ2X2, Y2] + [X2, ϕ2Y2]),

Nϕ1ϕ2(X1, Y2) = [ϕ1X1, ϕ2Y2]− ϕ1[X1, ϕ2Y2]− ϕ2[ϕ1X1, Y2].

NF (X1, Y1) = 4F2[X1, Y1], NF (X1, Y2) = 0, NF (X2, Y2) = 4F1[X2, Y2].

NG(Xα, Yα) = (Nϕ1 + Nϕ2 + Nϕ1ϕ2)(Xα, Yα), α = 1, 2,

NG(X1, Y2) = (Nϕ1ϕ2 −Nϕ1ϕ2 ◦ ϕ1 × ϕ2)(X1, Y2).

NH(Xα, Yα) = (Nϕ1 + Nϕ2 −Nϕ1ϕ2)(Xα, Yα), α = 1, 2,

NH(X1, Y2) = −(Nϕ1ϕ2 + Nϕ1ϕ2 ◦ ϕ1 × ϕ2)(X1, Y2).



11 ALMOST PRODUCT BICOMPLEX STRUCTURES ON MANIFOLDS 109

From these formulas it results:

Theorem 5.1. 1. The distribution V1 is involutive iff one of the fol-
lowing conditions is satisfied;
(5.2)

NF (X1, Y1) = 0; F2[X1, Y1] = 0; Nϕ2(X1, Y1) = 0; ϕ2[X1, Y1] = 0.

2. The distribution V2 is involutive iff one of the following conditions is
satisfied:
(5.3)

NF (X2, Y2) = 0; F1[X2, Y2] = 0; Nϕ1(X2, Y2) = 0; ϕ1[X2, Y2] = 0.

3. Both V1 and V2 are involutive iff one of the following conditions is
satisfied

(5.4)
NF = 0; F2[X1, Y1] = F1[X2, Y2] = 0;

Nϕ2(X1, Y1) = Nϕ1(X2, Y2) = 0; ϕ2[X1, Y1] = ϕ1[X2, Y2] = 0.

4. The ac-structure G is integrable iff NG = 0 or

(5.5)
(Nϕ1 + Nϕ2 + Nϕ1ϕ2)(Xα, Yα) = 0, α = 1, 2,

(Nϕ1ϕ2 −Nϕ1ϕ2 ◦ ϕ1 × ϕ2)(X1, Y2) = 0.

5. The ac-structure H is integrable iff NH = 0 or

(5.6)
(Nϕ1 + Nϕ2 −Nϕ1ϕ2)(Xα, Yα) = 0, α = 1.2,

(Nϕ1ϕ2 + Nϕ1ϕ2 ◦ ϕ1 × ϕ2)(X1, Y2) = 0.

6. Both G and H are integrable iff NG = NH = 0 or

(5.7) (Nϕ1 + Nϕ2)(Xα, Yα) = 0, α = 1, 2, Nϕ1ϕ2 = 0.

7. If NF = 0, then Nϕ1(X2, Y2) = Nϕ2(X1, Y1) = 0, Nϕ1ϕ2(Xα, Yα) =
0, α = 1, 2 and in this hypothesis one has.

7. a) G is integrable iff Nϕα(Xα, Yα) = 0, α = 1, 2,
(Nϕ1ϕ2 −Nϕ1ϕ2 ◦ ϕ1 × ϕ2)(X1, Y2) = 0.

7. b) H is integrable iff Nϕα(Xα, Yα) = 0, α = 1, 2,
(Nϕ1ϕ2 + Nϕ1ϕ2 ◦ ϕ1 × ϕ2)(X1, Y2) = 0.

7. c) Both G and H are integrable iff

(5.8)
Nϕα(Xα, Yα) = 0, α = 1, 2, Nϕ1ϕ2(X1, Y2) = 0

or Nϕα(Xα, Yα) = 0, Nϕα(X1, Y2) = 0, α = 1, 2.
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Definition 5.1. An almost CR-structure (D, J) on a manifold M is a
CR-structure [1] if for any X,Y ∈ D one has

(5.9)
a) [JX, Y ] + [X, JY ] ∈ D,

b)[JX, JY ]− [X, Y ]− J([JX, Y ] + [X, JY ]) = 0.

One remarks that a) is equivalent with

c) [JX, JY ]− [X, Y ] ∈ D.

From here and from 5.1 it results

Theorem 5.2. 1. The almost CR-structure (V1, ϕ
′
1) is a CR-structure

iff

(5.10) Nϕ1ϕ2(X1, Y1) = (Nϕ1 + Nϕ2)(X1, Y1) = 0.

2. The almost CR-structure (V2, ϕ
′
2) is a CR-structure iff

(5.11) Nϕ1ϕ2(X2, Y2) = (Nϕ1 + Nϕ2)(X2, Y2) = 0.

3. V1 is involutive and (V1, ϕ
′
1) is a CR-structure iff

(5.12) Nϕ2(X1, Y1) = 0, Nϕ′1(X1, Y1) = 0.

4. V2 is involutive and (V2, ϕ
′
2) is a CR-structure iff

(5.13) Nϕ1(X2, Y2) = 0, Nϕ′2(X2, Y2) = 0.

5. Both V1 and V2 are involutive and (V1, ϕ
′
1), (V2, ϕ

′
2) are CR-structures

iff

(5.14) NF = 0, Nϕ′α(Xα, Yα) = 0, α = 1, 2.

Definition 5.2. An apbc-structure (F,G, H) is called integrable if there
exists an atlas on M so that the associated natural bases are adapted bases
for this structure.

Theorema 5.3. An apbc-structure (F, G, H) is integrable iff one of the
following conditions holds

(5.15)
NF = NG = NH = 0;NF = Nϕ′1 = Nϕ′2 = 0,

Nϕ1ϕ2(X1, Y2) = 0; Nϕ1 = Nϕ2 = 0.
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Proof. If the apbc-structure (F,G, H) is integrable, then there exists
an atlas on M so that in the associated natural bases, the tensor fields
F,G, H,ϕ1, ϕ2, ϕ

′
1, ϕ

′
2 are given by (2.8) and hence all the conditions 5.15

are satisfied.
Conversely, if NF = NG = NH = 0, then from NF = 0, it results (see

[11]), that the distributions V1 and V2 are involutive and so there exists an
atlas on M so that the leaves of V1 are given locally by xa = const, a =
1, 2, . . . , 2n2 and xi, with i = 1, 2, . . . , 2n1, are the coordinates on them.
The leaves of V2 are given by xi = const and xa are the local coordinates
on them. Hence in the natural bases associated to this atlas, F is given by
(2.8). Then from the integrability of G and H, [8], it follows NG(X1, Y1) =
0, NH(X2, Y2) = 0, which give us Nϕ′1 = Nϕ′2 = 0, i.e. the ac-structures ϕ′1
and ϕ′2 on the leaves of V1 and V2 respectively, are integrable. Therefore
we can take a new atlas on M with the new coordinates of the form sp =
sp(xi), tp = tp(xi), p = 1, 2, . . . , n1, i = 1, 2, . . . , 2n1 on the leaves of V1 and
uα = uα(xa), vα = vα(xa), α = 1, 2 . . . , n2, a = 1, 2, . . . , 2n2 on the leaves
of V2, so that in these coordinates ϕ′1 and ϕ′2 and hence F,G, H,ϕ1, ϕ2

will be given by (2.8). As from the conditions 5.152 or 5.153 it follows
NF = NG = NH = 0, the theorem is proved.

Theorem 5.4. The apbc-structure (F, G,H) is integrable iff there exists
on M a symmetric FGH-connection.

Proof. If the apbc-structure (F, G, H) is integrable, from the integra-
bility of F it follows (see [11]), that exists a symmetric F -connection ∇0 on
M. Then, considering the connection

(5.16) ∇X =
1
2
(∇0

X −G ◦ ∇0
X ◦G),

i.e. the conjugate of ∇0 with respect to G, we obtain ∇F = ∇G = ∇H = 0.
Hence ∇ is a (F, G, H)-connection. For the torsion of ∇ we get

(5.17) T (X, Y ) =
1
2
[(∇0

XG)(GY )− (∇0
Y G)(GX)].

But ∇ being a G-connection, from [8], we have for NG

(5.18) NG(X, Y ) = T (X, Y )+G(T (GX, Y ))+G(T (X, GY ))−T (GX, GY ),
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and substituting T from 5.17, we obtain finally,

(5.19) NG(X, Y ) = 2T (X, Y ).

Hence, G being integrable, one has NG = 0 and so T = 0, i.e. ∇ is a
symmetric F, G,H-connection.

Conversely, if there exists on M a symmetric (F, G,H)-connection ∇,
then from the expressions 5.18, for NG and the similar for NF and NH , it
follows NF = NG = NH = 0, i.e. the apbc-structure (F, G,H) is integrable.
From the previous Theorem, it results.

Theorem 5.5. For a Riemannian mapc-structure (F, G,H, g1) on M ,
with the apbc-structure (F, G, H) integrable, one obtains;

1. (F, g1) and (F, g2) are respectively Riemannian and pseudo- Rieman-
nian locally product structures.

2. (G, g1), (H, g1) and (G, g2), (H, g2) are respectively Hermitian and
indefinite Hermitian structures.

3. (ϕ′1, γ
′
1) and (ϕ′2, γ

′
2) are Hermitian structures on the leaves of the

distributions V1 and V1 respectively.

6. Integrability for the almost symplectic structures ω1 and
ω2. For the exterior differential of the as-structures ω1 and ω2, taking
Xα, Yα, Zα ∈ Vα, α = 1, 2, we obtain

(6.1)

dω1(X1, Y1, Z1) = dψ1(X1, Y1, Z1),

3dω1(X1, Y1, Z2) = (LZ2ψ1)(X1, Y1)− ψ2(Z2, [X1, Y1]),

3dω1(X1, Y2, Z2) = (LX1ψ2)(Y2, Z2) + ψ1(X1, [Y2, Z2]),

dω1(X2, Y2, Z2) = dψ2(X2, Y2, Z2).

dω2(X1, Y1, Z1) = dψ1(X1, Y1, Z1),

3dω2(X1, Y1, Z2) = (LZ2ψ1)(X1, Y1) + ψ2(Z2, [X1, Y1])

3dω2(X1, Y2, Z2) = −(LX1ψ2)(Y2, Z2) + ψ1(X1, [Y2, Z2]),

dω2(X2, Y2, Z2) = −dψ2(X2, Y2, Z2).

From here it results

Theorem 6.1. 1. The as-structure ω1 is integrable iff

(6.2)
dψ1(X1, Y1, Z1) = 0, (LZ2ψ1)(X1, Y1) = ψ2(Z2, [X1, Y1]),

(LX1ψ2)(Y2, Z2) = −ψ1(X1, [Y2, Z2]), dψ2(X2, Y2, Z2) = 0.
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2. The as-structure ω2 is integrable iff

(6.3)
dψ1(X1, Y1, Z1) = 0, LZ2ψ1(X1, Y1) = −ψ2(Z2, [X1, Y1]),

LX1ψ2(Y2, Z2) = ψ1(X1, [Y2, Z2]), dψ2(X2, Y2, Z2) = 0.

3. Both ω1 and ω2 are integrable iff

(6.4)
NF = 0, dψα(Xα, Yα, Zα) = 0, α = 1, 2,

LZ2ψ1(X1, Y1) = LX1ψ2(Y2, Z2) = 0.

It results from here

Theorem 6.2. If for a Riemannian mapbc-structure (F, G,H, g1), the
associated 2-forms ω1 and ω2 are integrable, then:

1. (F, g1) and (F, g2) are respectively Riemannian and pseudo- Rieman-
nian locally product structures.

2. (G, g1), (H, g1) and (G, g2), (H, g2) are respectively almost Kähler and
indefinite almost Kähler structures.

3. (ϕ′1, γ
′
1) and (ϕ′2, γ

′
2) are almost Kähler structures on the leaves of V1

and V2 respectively.
4. Each vector field Z2 ∈ V2 (resp. X1 ∈ V1) generates a 1-parameter

group of symplectomorphisms between the leaves of V1 (resp. V2).
In particular, from Theorem 5.2 and 6.2 and from [8,II,p.148] it follows

Theorem 6.3 If for a Riemannian mapbc-structure (F, G, H, g1), on
M, the structures almost complex G,H and almost symplectic ω1, ω2 are
integrable then:

1. (F, g1) and (F, g2) are respectively Riemannian and pseudo- Rieman-
nian locally decompozable structures.

2. (G, g1), (H, g1) and (G, g2), (H, g2) are respectively Kahler and indef-
inite Kähler structures.

3. (ϕ′1, γ
′
1) and (ϕ′2, γ

′
2) are Kähler structures on the leaves of V1 and V2

respectively.

7. Example. Let N be a manifold, M = TN the total space of the
tangent bundle π : TN → N and V TN = Ker Tπ the vertical subbundle
of TN . Denote by (xi), (xi, yi) the local coordinates on N and TN and by
(∂i), (∂i, ∂̇i) the corresponding local bases, where ∂i = ∂

∂xi ; ∂̇i = ∂
∂yi , i =
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1, 2, . . . , n. Also we denote by (di), (di, ḋi), where di = dxi, ḋi = dyi, the
dual local bases on N and TN . Setting for each 1-form α ∈ D1(N), given
locally by α(x) = αi(x)di, γα(z) = αi(x)yi, where z = (x, y) ∈ TxN, we
obtain a class of functions on TN with the property that every vector field
A ∈ D1(TN) is uniquely determined by its values on these functions. The
mappings γ may be extended to tensor fields S ∈ D1

1(N) by putting

(7.1) γS(γα) = γ(α ◦ S), ∀α ∈ D1(N).

Locally, if S(x) = Si
j(x)∂i ⊗ dj , then γS(z) = Si

j(x)yj∂i, hence γS is
a vertical vector field on TN . Let then ∇ be a linear connection and X a
vector field on N . Setting

(7.2) Xh(γα) = γ(∇Xα), Xv(γα) = α(X) ◦ π, ∀α ∈ D1(N),

we obtain two vector fields on TN called respectively the horizontal and
the vertical lifts of X. We have the following useful relations.

(7.3)
fh = fv = f ◦ π, (fX)h = fhXh, (fX)v = fvXv

[
Xh, Y h

]
= [X, Y ]h − γRXY ,

[
Xh, Y v

]
= (∇XY )v, [Xv, Y v] = 0,

where f ∈ C∞(N), X, Y ∈ D1(N) and R is the curvature tensor of ∇.
Setting

(7.4) F (Xh) = Xh, F (Xv) = −Xv, ∀X ∈ D1(N),

we obtain an ap-structure F on TN , whose +1 and −1 eigendistributions
(subbundles) are respectively the horizontal distribution V1 = HTN associ-
ated to connection∇ and the vertical distribution V2 = V TN of the tangent
bundle TN . For f ∈ D1

1(N) and g ∈ D0
2(N), we define the horizontal (h)

and vertical (v) lifts by
(7.5)

fh(Xh) = f(X)h, fh(Xv) = 0, ; fv(Xh) = 0, fv(Xv) = f(X)v;

gh(Xh, Y h) = g(X, Y )v, gh(Xh, Y v) = gh(Xv, Y h) = gh(Xv, Y v) = 0,

gv(Xh, Y h) = gv(Xh, Y v) = gv(Xv, Y h) = 0, gv(Xv, Y v) = g(X, Y )v.

Let now (f, g) be an almost Hermitian structure on N and ω = g ◦ I × f
the associated 2-form. Setting

(7.6) F = Ih − Iv, G = fh + fv, H = fh − fv,
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we obtain the ap-structure F given by (7.4) and two ac-structures G and
H, which satisfy the conditions (2.1), i.e. determine an apbc-structure on
TN . Putting then

(7.7) g1 = gh + gv, g2 = gh − gv, ω1 = ωh + ωv, ω2 = ωh − ωv,

we get that g1, g2 determine Riemannian and pseudo-Riemannian structures
respectively and ω1, ω2 as-structures on TN , which satisfy the conditions
(3.1) and (3.2). Hence, we have

Theorem 7.1 Given an almost Hermitian structure (f, g) with the as-
sociated 2-form ω and a linear connection ∇ on N , one obtains by the
formulas (7.6) and (7.7) a Riemannian mapbc-structure (F, G, H, g1), with
the associated metric g2 and two as-structures (ω1, ω2) on the manifold
TN . The pair of the associated supplementary cc-structures is given by
ϕ1 = fh, ϕ2 = fv, the pairs of induced almost Hermitian structures on the
distributions V1 = HTM and V2 = V TM by (fh, gh)/V1, (fv, gv)/V2 and
the supplementary almost CR-structures by (V1, f

h/V1), (V2, f
v/V2).

For a connection ∇ on N we define the diagonal lift D, (see [6]), by

(7.8)
DXhY h = (∇XY )h, DXhY v = (∇XY )v,

DXvY h = DXvY v = 0, ∀X, Y ∈ D1(N).

The nonvanishing components of the torsion and the curvature tensor fields
of D, are given by

(7.9)
T (Xh, Y h) = T (X, Y )h + γRXY ,

RXhY hZh = (RXY Z)h, RXhY hZv = (RXY Z)v,

where T and R are the torsion and curvature tensors of ∇. After that, for
the covariant derivatives with respect to D, of F, G, H, gα and ωα, α = 1, 2
we obtain

(7.10)

DF = 0;DXhG = (∇Xf)h + (∇Xf)v, DXvG = 0;

DXhH = (∇Xf)h − (∇Xf)v, DXvH = 0;

DXhg1 = (∇Xg)h + (∇Xg)v, DXvg1 = 0;

DXhg2 = (∇Xg)h − (∇Xg)v, DXvg2 = 0;

DXhω1 = (∇Xω)h + (∇Xω)v, DXvω1 = 0;

DXhω2 = (∇Xω)h − (∇Xω)v, DXvω2 = 0.
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Hence, DF = 0 always, DG = DH = 0, iff ∇f = 0, Dgα = 0, α = 1, 2 iff
∇g = 0 and Dωα = 0, α = 1, 2 iff ∇ω = 0. So we have

Theorem 7.2. The diagonal lift D on TN , for a connection ∇ on N ,
is a (F, G,H, g1)-connection iff ∇ is a (f, g)-connection, i.e. iff ∇ is given
by

(7.11) ∇ = ψf ◦ ψg(∇0) + χf ◦ χg(τ),

with ∇0 ∈ C(N) fixed and τ ∈ D1
2(N) arbitrary.

For the Nijenhuis tensors of F,G and H one obtains
(7.12)

NF (Xh, Y h) = 4γRXY , NF (Xh, Y v) = 0, NF (Xv, Y v) = 0;

NG(Xh, Y h) = Nf (X, Y )h + γ[RXY −RfXfY + f ◦ (RfXY + RXfY )],

NG(Xh, Y v) = [(∇fXf − f ◦ ∇Xf)(Y )]v, NG(Xv, Y v) = 0;

NH(Xh, Y h) = Nf (X,Y )h + γ[RXY −RfXfY − f ◦ (RfXY + RXfY )],

NH(Xh, Y v) = −[(∇fXf + f ◦ ∇Xf)(Y )]v, NH(Xv, Y v) = 0.

From here it results.

Theorem 7.3. 1. The ap-structure F is integrable iff R = 0;
2. The ac-structure G is integrable iff

(7.13)
Nf = 0,∇fXf − f ◦ ∇Xf = 0,

RXY −RfXfY + f ◦ (RfXY + RXfY ) = 0;

3. The ac-structure H is integrable iff

(7.14)
Nf = 0,∇fXf + f ◦ ∇Xf = 0,

RXY −RfXfY − f ◦ (RfXY + RXfY ) = 0;

4. Both the ac-structure G and H are integrable iff

(7.15) Nf = 0,∇f = 0, RXY −RfXfY = 0;

5. The apbc-structure (F, G, H) is integrable iff

(7.16) Nf = 0,∇f = 0, R = 0.
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For the exterior derivative of the 2-forms ω1 and ω2 we obtain

dω1(Xh, Y h, Zh) = dω(X,Y, Z)h, 3dω1(Xh, Y h, Zv) = −γ(iZω ◦RXY ),

3dω1(Xh, Y v, Zv) = (∇Xω(Y, Z))v, dω1(Xv, Y v, Zv) = 0;

dω2(Xh, Y h, Zh) = dω(X,Y, Z)h, 3dω2(Xh, Y h, Zv) = γ(iZω ◦RXY ),

3dω2(Xh, Y v, Zv) = −(∇Xω)(Y,Z)v, dω2(Xv, Y v, Zv) = 0.

So, one has

Theorem 7.4. The 2-forms ωα, α = 1, 2 are simultaneous integrable,
namely iff

(7.18) dω = 0,∇ω = 0, R = 0.

From (7.16) and (7.18) one obtains.

Theorem 7.5. The apbc-structure (F,G, H) and the as-structures ω1, ω2

are simultaneous integrable iff

(7.19) Nf = dω = 0,∇f = ∇ω = 0, R = 0,

with other words iff (f, g) is a Kahler structure and ∇ a(f, g)-connection
with vanishing curvature on N .

In particular, these conditions are satisfied if (f, g) is a Kahler structure
with vanishing curvature on N and ∇ the Levi-Civita connection of g.
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