ALMOST PRODUCT BICOMPLEX STRUCTURES ON MANIFOLDS*

V. CRUCEANU

Abstract

We study the equivalence of an almost product bicomplex (apbc)-structure with other important structures on a manifold, metrics and linear connections compatible with such a structure and the integrability of the apbc-structures. Finally, we give an example of an apbc-structure on the tangent bundle of an almost Hermitian manifold.

Mathematics Subject Classification 2000: 53C55. Key words: Almost product bicomplex structure. Associated metric and symplectic structures. Compatible connections. Integrability.

1. Introduction. The almost product bicomplex (apbc)-structures, together with other important structures on a manifold, were considered by Libermann [9], Hsu [7], Cruceanu [3], Maksym and Zmurek [10] and others. But a more complete and consistent analyze of these structures was made by Bonome, Castro, Garcia-Rio, Hervella and Matsushita in the joint paper [2].

In this work we study the equivalence of an apbc-structure with other important structures on a manifold, metrics and linear connections compatible with such a structure and the integrability of the metric apbc-structures. An example of a Riemannian apbc-structure on the total space of the tangent bundle to an almost Hermitian manifold is also analyzed.
2. Almost product bicomplex structures. Let M be a paracompact and connected C^{∞}-manifold, $\mathcal{F}(M)$ the ring of real functions, $\mathcal{D}_{s}^{r}(M)$

[^0]the $\mathcal{F}(M)$-module of (r, s)-tensor fields and $\mathcal{D}(M)$ the $\mathcal{F}(M)$-tensor algebra on M.

Definition 2.1. An almost product bicomplex (apbc)-structure on the manifold M, is a triple (F, G, H) of $(1,1)$-tensor fields which satisfies the conditions

$$
\begin{equation*}
-F^{2}=G^{2}=H^{2}=F \circ G \circ H=-I, F \neq \pm I \tag{2.1}
\end{equation*}
$$

It follows that F is an almost product (ap)-structure and G, H are almost complex (ac)-structures on M, which satisfy the relations
(2.2) $F \circ G=G \circ F=H, G \circ H=H \circ G=-F, H \circ F=F \circ H=G, F \neq \pm I$.

Denote by $V_{1}=F^{+}$and $V_{2}=F^{-}$, the eigendistributions (or subbundles of $T M$), corresponding to eigenvalues ± 1 and by F_{1} and F_{2} the associated projectors to F, i.e.

$$
\begin{equation*}
F_{1}=\frac{I+F}{2}, \quad F_{2}=\frac{I-F}{2} \tag{2.3}
\end{equation*}
$$

Setting then

$$
\begin{equation*}
\varphi_{1}=G \circ F_{1}, \quad \varphi_{2}=G \circ F_{2} \tag{2.4}
\end{equation*}
$$

one obtains

$$
\begin{align*}
& \varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}=0, \varphi_{1}^{2}=-F_{1}, \varphi_{2}^{2}=-F_{2} \\
& \varphi_{1}^{2}+\varphi_{2}^{2}=-I, \varphi_{1}^{3}+\varphi_{1}=\varphi_{2}^{3}+\varphi_{2}=0 \tag{2.5}
\end{align*}
$$

Definition 2.2. An almost cocomplex (acc)-structure on M is a (1, 1)tensor field φ satisfying $\varphi^{3}+\varphi=0$. Two (acc)-structures φ_{1} and φ_{2} are supplementary if $\varphi_{1}^{2}+\varphi_{2}^{2}=-I$.

From (2.4) and (2.5) we obtain

$$
\begin{equation*}
F=\varphi_{2}^{2}-\varphi_{1}^{2}, \quad G=\varphi_{1}+\varphi_{2}, \quad H=\varphi_{1}-\varphi_{2} \tag{2.6}
\end{equation*}
$$

Then, from (2.2) it follows that G and H preserve the distributions V_{1} and V_{2} and so, putting $\varphi_{1}^{\prime}=G / V_{1}, \varphi_{2}^{\prime}=G / V_{2}$, one has ${\varphi_{1}^{\prime}}^{2}=-I_{1},{\varphi_{2}^{\prime}}^{2}=$ $-I_{2}$, i.e. φ_{1}^{\prime} and φ_{2}^{\prime} are complex structures on V_{1} and V_{2} respectively.

Definition 2.3. An almost CR-structure [1] on a manifold M is a pair (D, J), where D is a distribution on M and J an almost complex structure on D. Two almost $C R$-structures $\left(D_{1}, J_{1}\right)$ and $\left(D_{2}, J_{2}\right)$ are supplementary if D_{1} and D_{2} are supplementary distributions on M.

It follows that $\left(V_{1}, \varphi_{1}^{\prime}\right)$ and $\left(V_{1}, \varphi_{2}^{\prime}\right)$ are supplementary almost CRstructures on M and from (2.4) one has

$$
\begin{equation*}
G=\varphi_{1}^{\prime} \circ F_{1}+\varphi_{2}^{\prime} \circ F_{2}, \quad H=\varphi_{1}^{\prime} \circ F_{1}-\varphi_{2}^{\prime} \circ F_{2} \tag{2.7}
\end{equation*}
$$

From the previous considerations it results.
Theorem 2.1. An apbc-structure on the manifold M may be defined by one of the following equivalent structures:

1) A triple formed by an ap-structure F and two ac-structures G and H which satisfy $F \circ G \circ H=-I, F \neq \pm I$.
2) A pair formed by an ap-structure F and an ac-structure G (or H), which commute.
3) Two commuting ac-structures, G and H, with $G \neq \pm H$.
4) Two supplementary acc-structures φ_{1} and φ_{2}, with $\varphi_{1} \neq 0, I$.
5) Two supplementary almost $C R$-structures $\left(V_{1}, \varphi_{1}^{\prime}\right)$ and $\left(V_{2}, \varphi_{2}^{\prime}\right)$.
V_{1} and V_{2} being complex distributions, it results $\operatorname{dim} V_{1}=2 n_{1}, \operatorname{dim} V_{2}=$ $2 n_{2}$ and so $\operatorname{dim} M=2\left(n_{1}+n_{2}\right)$. In particular, if F is an almost paracomplex (apc)-structure [5], on M, i.e. $F^{2}=I, \operatorname{Tr} F=0$, then $n_{1}=n_{2}=n$ and hence $\operatorname{dim} M=4 n$.

Definition 2.4. An adapted basis, for an apbc-structure (F, G, H) in $x \in M$, is a basis $\left(e_{i}, e_{n_{1}+i}, e_{a}, e_{n_{2}+a}\right)$, with $e_{i} \in V_{1}, e_{n_{1}+i}=G\left(e_{i}\right), e_{a} \in$ $V_{2}, e_{n_{2}+a}=G\left(e_{a}\right), i=1,2, \ldots, n_{1}, a=1,2, \ldots, n_{2}$.

In an adapted basis, the tensor fields F, G, H, φ_{1} and φ_{2} have the matrices

$$
\begin{align*}
& F=\left[\begin{array}{cc}
I_{2 n_{1}} & 0 \\
0 & -I_{2 n_{2}}
\end{array}\right], G=\left[\begin{array}{cc}
\varphi_{1}^{\prime} & 0 \\
0 & \varphi_{2}^{\prime}
\end{array}\right], H=\left[\begin{array}{cc}
\varphi_{1}^{\prime} & 0 \\
0 & -\varphi_{2}^{\prime}
\end{array}\right] \tag{2.8}\\
& \varphi_{1}=\left[\begin{array}{cc}
\varphi_{1}^{\prime} & 0 \\
0 & 0
\end{array}\right], \varphi_{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & \varphi_{2}^{\prime}
\end{array}\right]
\end{align*}
$$

with

$$
\varphi_{1}^{\prime}=\left[\begin{array}{cc}
0 & -I_{n_{1}} \tag{2.9}\\
I_{n_{1}} & 0
\end{array}\right], \quad \varphi_{2}^{\prime}=\left[\begin{array}{cc}
0 & -I_{n_{2}} \\
I_{n_{2}} & 0
\end{array}\right]
$$

The change of the adapted bases are given by matrices of the form

$$
T=\left[\begin{array}{cc}
A & 0 \tag{2.10}\\
0 & B
\end{array}\right], \text { with } A=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right], B=\left[\begin{array}{cc}
p & -q \\
q & p
\end{array}\right]
$$

and $a+i b \in G L\left(n_{1}, \mathbb{C}\right), p+i q \in G L\left(n_{2}, \mathbb{C}\right)$.
It follows from here.

Theorem 2.2. The structural group of the tangent bundle of a manifold M endowed with an apbc-structure is reducible to the real representation $\Sigma\left(2 n_{1}, \mathbb{R}\right) \times \Sigma\left(2 n_{2}, \mathbb{R}\right)$ of the direct product $G L\left(n_{1}, \mathbb{C}\right) \times G L\left(n_{2}, \mathbb{C}\right)$.
3. Metric and symplectic structures compatible with an apbcstructure. Let h be a metric structure on M and

$$
\begin{align*}
& g_{1}=h \circ(I \times I+F \times F+G \times G+H \times H), \quad g_{2}=g_{1} \circ I \times F \tag{3.1}\\
& \omega_{1}=g_{1} \circ I \times G, \quad \omega_{2}=g_{1} \circ I \times H
\end{align*}
$$

One obtains

$$
\begin{align*}
& g_{\alpha} \circ F \times F=g_{\alpha} \circ G \times G=g_{\alpha} \circ H \times H=g_{\alpha} \tag{3.2}\\
& \omega_{\alpha} \circ F \times F=\omega_{\alpha} \circ G \times G=\omega_{\alpha} \circ H \times H=\omega_{\alpha}, \quad \alpha=1,2
\end{align*}
$$

i.e. g_{α} are metric and ω_{α} are almost symplectic structures on M, compatible with the apbc-structure (F, G, H).

In particular, if h is a Riemannian structure then g_{1} is also Riemannian and g_{2} is pseudo-Riemannian structure of signature $\left(n_{1}, n_{2}\right)$.

Denoting then

$$
\begin{equation*}
\gamma_{1}^{\prime}=g_{1} / V_{1} \times V_{1}, \quad \gamma_{2}^{\prime}=g_{2} / V_{2} \times V_{2} \tag{3.3}
\end{equation*}
$$

we obtain two metrics γ_{1}^{\prime} on V_{1} and γ_{2}^{\prime} on V_{2}, which are Riemannian in the same time with g_{1} and satisfy

$$
\begin{equation*}
\gamma_{\alpha}^{\prime} \circ \varphi_{\alpha}^{\prime} \times \varphi_{\alpha}^{\prime}=\gamma_{\alpha}^{\prime}, \quad \alpha=1,2 \tag{3.4}
\end{equation*}
$$

Considering

$$
\begin{equation*}
\psi_{1}=\omega_{1} \circ F_{1} \times F_{1}, \quad \psi_{2}=\omega_{2} \circ F_{2} \times F_{2} \tag{3.5}
\end{equation*}
$$

we obtain two degenerate 2 -forms on M and we have

$$
\begin{equation*}
\omega_{1}=\psi_{1}+\psi_{2}, \quad \omega_{2}=\psi_{1}-\psi_{2} \tag{3.6}
\end{equation*}
$$

After that, setting:

$$
\begin{equation*}
\psi_{1}^{\prime}=\omega_{1} / V_{1} \times V_{1}, \quad \psi_{2}^{\prime}=\omega_{2} / V_{2} \times V_{2}, \tag{3.7}
\end{equation*}
$$

one obtains two symplectic forms on V_{1} and V_{2}, which satisfy

$$
\begin{equation*}
\psi_{\alpha}^{\prime} \circ \varphi_{\alpha}^{\prime} \times \varphi_{\alpha}^{\prime}=\psi_{\alpha}^{\prime}, \quad \alpha=1,2 . \tag{3.8}
\end{equation*}
$$

Definition 3.1. We call the set (F, G, H, g_{1}), which satisfy (2.1) and (3.1), a metric almost product bicomplex (mapbc)-structure on M and $g_{2}, \omega_{1}, \omega_{2}$ the associated metric and almost symplectic structures.

Therefore, to a Riemannian mapbc-structure (F, G, H, g_{1}) we will associate the follows structures: the Riemannian ap-structure (F, g_{1}) with the associated pseudo Riemannian structure g_{2}, the pseudo-Riemannian apstructure (F, g_{2}) with the associated Riemannian structure g_{1}, the almost Hermitian structures $\left(G, g_{1}\right)$ and (H, g_{1}) with the associated almost symplectic structures ω_{1} and ω_{2} respectively, and the indefinit almost Hermitian structures (G, g_{2}) and (H, g_{2}) with the associated almost symplectic structures ω_{2} and ω_{1} respectively. We will have also, on the distributions V_{α}, the Hermitian structures $\left(\varphi_{\alpha}^{\prime}, \gamma_{\alpha}^{\prime}\right)$ with the associated symplectic structures $\psi_{\alpha}^{\prime}, \alpha=1,2$.

Definition 3.2. An adapted basis for the Riemannian mapbc-structure (F, G, H, g_{1}) is an adapted basis for the abpc-structure (F, G, H), which is orthonormal with respect to g_{1}.

In such a basis the matrices of g_{1}, g_{2}, ω_{1} and ω_{2} coincide with the matrices of I, F, G, H respectively. From here and the Theorem 2.2, it follows

Theorem 3.1. The structural group of the tangent bundle for a manifold M endowed with a Riemannian mapbc-structure is reducible to the real representation $S O\left(2 n_{1}\right) \times S O\left(2 n_{2}\right)$ of the direct product $\mathcal{U}\left(n_{1}, \mathbb{C}\right) \times \mathcal{U}\left(n_{2}, \mathbb{C}\right)$.
4. Connections compatible with an apbc-structure. For to give a more geometrical character to our considerations, we will use from the beginning the following important remark. If ∇^{0} is a fixed connection on M, then for each connection ∇ there exists a single tensor field $\tau \in \mathcal{D}_{2}^{1}(M)$ so that $\nabla=\nabla^{0}+\tau$. With other words, the set $C(M)$ of linear connections on M is an $\mathcal{F}(M)$-affine module [4], associated to the $\mathcal{F}(M)$-linear module $\mathcal{D}_{2}^{1}(M)$.

Considering now an ap-structure F on M and setting for $\nabla \in C(M), \tau \in$ $\mathcal{D}_{2}^{1}(M), X \in \mathcal{D}^{1}(M)$,

$$
\begin{equation*}
\psi_{F}(\nabla)_{X}=\frac{1}{2}\left(\nabla_{X}+F \circ \nabla_{X} \circ F\right), \chi_{F}(\tau)_{X}=\frac{1}{2}\left(\tau_{X}+F \circ \tau_{X} \circ F\right) \tag{4.1}
\end{equation*}
$$

we get that $\psi_{F}(\nabla) \in \mathcal{C}(M), \chi_{F}(\tau) \in \mathcal{D}_{2}^{1}(M)$ and

$$
\begin{equation*}
\psi_{F}^{2}=\psi_{F}, \quad \chi_{F}^{2}=\chi_{F}, \quad \psi_{F}(\nabla+\tau)=\psi_{F}(\nabla)+\chi_{F}(\tau) \tag{4.2}
\end{equation*}
$$

It follows from here that ψ_{F} is the $\mathcal{F}(M)$-affine projector on $C(M)$ associated to the $\mathcal{F}(M)$-linear projector χ_{F} on $\mathcal{D}_{2}^{1}(M)$.

Definition 4.1. A linear connection ∇ on M is called compatible with the ap-structure F,or is a F-connection, if $\nabla F=0$.

From (4.1) and (4.2) it follows that $\nabla F=0$ is equivalent with $\psi_{F}(\nabla)=$ ∇ and so with $C_{F}(M)=\operatorname{Im} \psi_{F}$. Hence we have

Theorem 4.1. The set $C_{F}(M)$ of connection on M, compatible with the ap-structure F, is the affine submodule of $C(M)$ which coincides with the image of the affine projector ψ_{F}.

Considering on $C(M)$ the conjugation with respect to F, i.e. the automorphism $\kappa_{F}: C(M) \rightarrow C(M)$ given by

$$
\begin{equation*}
\kappa_{F}(\nabla)_{X}=F \circ \nabla_{X} \circ F, \quad \forall \nabla \in C(M), X \in \mathcal{D}^{1}(M) \tag{4.3}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\psi_{F}(\nabla)=\frac{1}{2}\left(\nabla+\kappa_{F}(\nabla)\right) \tag{4.4}
\end{equation*}
$$

Hence κ_{F} is the affine symmetry of the affine module $C(M)$, with respect to affine submodule $C_{F}(M)$, made parallel with the linear submodule Ker χ_{F} and ψ_{F} is the mean connection of ∇ and its conjugate $\chi_{F}(\nabla)$, with
respect to F. We will call $\psi_{F}(\nabla)$ the F-connection associated to ∇, with respect to ap-structure F. Using the projectors F_{1} and F_{2}, the F-connection $\psi_{F}(\nabla)$ may be also given by

$$
\begin{equation*}
\psi_{F}(\nabla)_{X}=\sum_{\alpha=1}^{2} F_{\alpha} \circ \nabla_{X} \circ F_{\alpha}, \quad X \in \mathcal{D}^{1}(M) \tag{4.5}
\end{equation*}
$$

But being a F-connection, $\psi_{F}(\nabla)$ preserves the subbundles V_{1}, V_{2} and induces on them the connections

$$
\begin{equation*}
\stackrel{\alpha}{\nabla}_{X} Y_{\alpha}=F_{\alpha} \circ \nabla_{X} Y_{\alpha}, \quad X \in \mathcal{D}^{1}(M), Y_{\alpha} \in V_{\alpha}, \alpha=1,2 \tag{4.6}
\end{equation*}
$$

and so we have

$$
\begin{equation*}
\psi_{F}(\nabla)_{X}=\sum_{\alpha=1}^{2} \stackrel{\alpha}{X}_{X} \circ F_{\alpha} \tag{4.7}
\end{equation*}
$$

Let ∇^{0} be a fixed connection on M. Since $C_{F}(M)=\operatorname{Im} \psi_{F}$ then, for each connection $\nabla \in C_{F}(M)$, there exists $\nabla^{\prime} \in C(M)$ so that $\nabla=\psi_{F}\left(\nabla^{\prime}\right)$. After that, there exists $\tau \in \mathcal{D}_{2}^{1}(M)$ so that $\nabla^{\prime}=\nabla^{0}+\tau$. Therefore, $\nabla=$ $\psi_{F}\left(\nabla^{0}+\tau\right)$ and from (4.2) it results

Theorem 4.2. The set $C_{F}(M)$ of connections ∇ on M compatible with the ap-structure F is given by

$$
\begin{equation*}
\nabla=\psi_{F}\left(\nabla^{0}\right)+\chi_{F}(\tau) \tag{4.8}
\end{equation*}
$$

where ∇ is a fixed connection and τ an arbitrary (1.2)-tensor field on M.
With other words, $C_{F}(M)$ is the affine submodule of $C(M)$ passing through the F-connection $\psi_{F}\left(\nabla^{0}\right)$ and having the direction given by the linear submodule $\operatorname{Im} \chi_{F}$ of $\mathcal{D}_{2}^{1}(M)$. Similarly considering an ac-structure G on M and setting for $\nabla \in C(M), \tau \in \mathcal{D}_{2}^{1}(M)$ and $X \in \mathcal{D}^{1}(M)$,

$$
\begin{equation*}
\psi_{G}(\nabla)_{X}=\frac{1}{2}\left(\nabla_{X}-G \circ \nabla_{X} \circ G\right), \quad \chi_{G}(\tau)_{X}=\frac{1}{2}\left(\tau_{X}-G \circ \tau_{X} \circ G\right) \tag{4.9}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\psi_{G}^{2}=\psi_{G}, \quad \chi_{G}^{2}=\chi_{G}, \quad \psi_{G}(\nabla+\tau)=\psi_{G}(\nabla)+\chi_{G}(\tau) \tag{4.10}
\end{equation*}
$$

After that, for the set of G-connections and the conjunction with respect to G, we have $C_{G}(M)=\operatorname{Im} \psi_{G}, \kappa_{G}(\nabla)_{X}=-G \circ \nabla_{X} \circ G$ and so,

$$
\begin{equation*}
\psi_{G}(\nabla)=\frac{1}{2}\left(\nabla+\kappa_{G}(\nabla)\right) \tag{4.11}
\end{equation*}
$$

Finally, the affine submodule $C_{G}(M)$ of G-connections is given by

$$
\begin{equation*}
\nabla=\psi_{G}\left(\nabla^{0}\right)+\chi_{G}(\tau) \tag{4.12}
\end{equation*}
$$

with fixed $\nabla^{0} \in C(M)$ and arbitrary $\tau \in \mathcal{D}_{2}^{1}(M)$.
Definition 4.2. A connection ∇ is called compatible with the apbcstructure (F, G, H) or is a (F, G, H)-connection on M, if it satisfies

$$
\begin{equation*}
\nabla F=\nabla G=\nabla H=0 \tag{4.13}
\end{equation*}
$$

By an easy calculation we obtain
Theorem 4.3. A connection ∇ on M is a (F, G, H)-connection iff it satisfies one of the following conditions:

1. ∇ is a (F, G) or $a(G, H)$ or a (H, F)-connection,
2. ∇ is a $\left(\varphi_{1}, \varphi_{2}\right)$-connection,
3. There exist a φ_{1}^{\prime}-connection $\stackrel{1}{\nabla}$ on V_{1} and a φ_{2}^{\prime}-connection $\stackrel{2}{\nabla}$ on V_{2} so that

$$
\begin{equation*}
\nabla_{X}=\stackrel{1}{\nabla}_{X} \circ F_{1}+\stackrel{2}{\nabla}_{X} \circ F_{2}, \quad \forall X \in \mathcal{D}^{1}(M) \tag{4.14}
\end{equation*}
$$

From the commutativity of the composition for F, G, H it follows the commutativity for the composition of $\psi_{F}, \psi_{G}, \psi_{H}$; of $\chi_{F}, \chi_{G}, \chi_{H}$ and of $\kappa_{F}, \kappa_{G}, \kappa_{H}$. After that ψ_{F} and ψ_{G} being affine projectors associated to linear projectors χ_{F} and χ_{G} it results that $\psi_{F} \circ \psi_{G}$ is the affine projector associated to linear projector $\chi_{F} \circ \chi_{G}$, i.e.

$$
\begin{equation*}
\psi_{F} \circ \psi_{G}(\nabla+\tau)=\psi_{F} \circ \psi_{G}(\nabla)+\chi_{F} \circ \chi_{G}(\tau) \tag{4.15}
\end{equation*}
$$

From here one obtains

Theorem 4.4. The set $C_{F G H}(M)$ of connections compatible with the apbc-structure (F, G, H) is given by

$$
\begin{equation*}
\nabla=\psi_{F} \circ \psi_{G}\left(\nabla^{0}\right)+\chi_{F} \circ \chi_{G}(\tau) \tag{4.16}
\end{equation*}
$$

with $\nabla^{0} \in C(M)$ fixed and $\tau \in \mathcal{D}_{2}^{1}(M)$ arbitrary.
Taking here $\tau=0$, it follows that an apbc-structure (F, G, H) assign to each connection $\nabla^{0} \in C(M)$ a (F, G, H)-connection $\nabla=\psi_{F} \circ \psi_{G}\left(\nabla^{0}\right)$ which may be written also in the form

$$
\begin{equation*}
\nabla=\frac{1}{4}\left(\nabla^{0}+\kappa_{F}\left(\nabla^{0}\right)+\kappa_{G}\left(\nabla^{0}\right)+\kappa_{H}\left(\nabla^{0}\right)\right) \tag{4.17}
\end{equation*}
$$

i.e. ∇ is the mean connection of ∇^{0} and its conjugate connections with respect to F, G and H.

Now let g be a metric on M, considered as a mapping from $\mathcal{D}^{1}(M)$ to $\mathcal{D}_{1}(M)$ which assigns to a vector field X the 1-form α given by $\alpha(Y)=$ $g(X, Y)$, for any vector field Y. Setting then, for $\nabla \in C(M)$ and $\tau \in \mathcal{D}_{2}^{1}(M)$,

$$
\begin{equation*}
\psi_{g}(\nabla)_{X}=\frac{1}{2}\left(\nabla_{X}+g^{-1} \circ \nabla_{X} \circ g\right), \quad \chi_{g}(\tau)_{X}=\frac{1}{2}\left(\tau_{X}+g^{-1} \circ \tau_{X} \circ g\right) \tag{4.18}
\end{equation*}
$$

we obtain as for an ap-structure F, the following
Theorem 4.5. The set $C_{g}(M)$ of connections on M compatible with a metric g (i.e. $\nabla g=0$) are given by

$$
\begin{equation*}
\nabla=\psi_{g}\left(\nabla^{0}\right)+\chi_{g}(\tau) \tag{4.19}
\end{equation*}
$$

with fixed $\nabla^{0} \in C(M)$ and arbitrary $\tau \in \mathcal{D}_{2}^{1}(M)$.
Definition 4.3. A connection ∇ is called compatible with a mapbcstructure (F, G, H, g), or is a (F, G, H, g)-connection on M, if it satisfies

$$
\begin{equation*}
\nabla F=\nabla G=\nabla H=\nabla g=0 \tag{4.20}
\end{equation*}
$$

For a $\left(F, G, H, g_{1}\right)$-connection ∇ on M we have also

$$
\begin{align*}
& \nabla F_{\alpha}=\nabla \varphi_{\alpha}=\nabla g_{2}=\nabla \omega_{\alpha}=\nabla \psi_{\alpha}=0, \\
& \stackrel{\alpha}{\nabla} \varphi_{\alpha}^{\prime}=\stackrel{\alpha}{\nabla} \gamma_{\alpha}^{\prime}=\stackrel{\alpha}{\nabla} \psi_{\alpha}^{\prime}=0, \quad \alpha=1,2 . \tag{4.21}
\end{align*}
$$

Using (2.2), we obtain for a mapbc-structure $\left(F, G, H, g_{1}\right), \psi_{g_{1}} \circ \psi_{F}=$ $\psi_{F} \circ \psi_{g_{1}}$, etc. $\chi_{g_{1}} \circ \chi_{F}=\chi_{F} \circ \chi_{g_{1}}$, etc and so for the connections compatible with such a structure one obtains

Theorem 4.6. The set $C_{F G H g_{1}}(M)$ of connections on M, compatible with the mapbc-structure $\left(F, G, H, g_{1}\right)$ is given by

$$
\begin{equation*}
\nabla=\psi_{F} \circ \psi_{G} \circ \psi_{g_{1}}\left(\nabla^{0}\right)+\chi_{F} \circ \chi_{G} \circ \chi_{g_{1}}(\tau) \tag{4.22}
\end{equation*}
$$

with fixed $\nabla^{0} \in C(M)$ and arbitrary $\tau \in \mathcal{D}_{2}^{1}(M)$.
In particular, taking here $\tau=0$ and $\nabla^{0}=\nabla^{g_{1}}$ or $\nabla^{0}=\nabla^{g_{2}}$, i.e. the Levi-Civita connections of the metrics g_{1} and g_{2}, we obtain

Theorem 4.7. The connections $D^{\alpha}=\psi_{F} \circ \psi_{G}\left(\nabla^{g_{\alpha}}\right), \alpha=1,2$, associated to Levi-Civita connections of g_{α}, are compatible with the mapbcstructure (F, G, H, g_{1}).
5. Integrability for the apbc-structure (F, G, H).

Considering the Nijenhus tensor for $\varphi_{1}, \varphi_{2},\left(\varphi_{1}, \varphi_{2}\right), F, G, H$ and taking $X_{\alpha} \in V_{\alpha}, \alpha=1,2$ we obtain

$$
\begin{aligned}
& N_{\varphi_{1}}\left(X_{1}, Y_{1}\right)=\left[\varphi_{1} X_{1}, \varphi_{1} Y_{1}\right]+\varphi_{1}^{2}\left[X_{1}, Y_{1}\right]-\varphi_{1}\left[\varphi_{1} X_{1}, Y_{1}\right]-\varphi_{1}\left[X_{1}, \varphi_{1} Y_{1}\right] \\
& N_{\varphi_{1}}\left(X_{1}, Y_{2}\right)=\varphi_{1}\left(\varphi_{1}\left[X_{1}, Y_{2}\right]-\left[\varphi_{1} X_{1}, Y_{2}\right]\right) \\
& N_{\varphi_{1}}\left(X_{2}, Y_{2}\right)=\varphi_{1}^{2}\left[X_{2}, Y_{2}\right]=-F_{1}\left[X_{2}, Y_{2}\right] \\
& N_{\varphi_{2}}\left(X_{1}, Y_{1}\right)=\varphi_{2}^{2}\left[X_{1}, Y_{1}\right]=-F_{2}\left[X_{1}, Y_{1}\right] \\
& N_{\varphi_{2}}\left(X_{1}, Y_{2}\right)=\varphi_{2}\left(\varphi_{2}\left[X_{1}, Y_{2}\right]-\left[X_{1}, \varphi_{2} Y_{2}\right]\right) \\
& N_{\varphi_{2}}\left(X_{2}, Y_{2}\right)=\left[\varphi_{2} X_{2}, \varphi_{2} Y_{2}\right]+\varphi_{2}^{2}\left[X_{2}, Y_{2}\right]-\varphi_{2}\left[\varphi_{2} X_{2}, Y_{2}\right]-\varphi_{2}\left[X_{2}, \varphi_{2} Y_{2}\right], \\
& N_{\varphi_{1} \varphi_{2}}\left(X_{1}, Y_{1}\right)=-\varphi_{2}\left(\left[\varphi_{1} X_{1}, Y_{1}\right]+\left[X_{1}, \varphi_{1} Y_{1}\right]\right) \\
& N_{\varphi_{1} \varphi_{2}}\left(X_{2}, Y_{2}\right)=-\varphi_{1}\left(\left[\varphi_{2} X_{2}, Y_{2}\right]+\left[X_{2}, \varphi_{2} Y_{2}\right]\right) \\
& N_{\varphi_{1} \varphi_{2}}\left(X_{1}, Y_{2}\right)=\left[\varphi_{1} X_{1}, \varphi_{2} Y_{2}\right]-\varphi_{1}\left[X_{1}, \varphi_{2} Y_{2}\right]-\varphi_{2}\left[\varphi_{1} X_{1}, Y_{2}\right] \\
& N_{F}\left(X_{1}, Y_{1}\right)=4 F_{2}\left[X_{1}, Y_{1}\right], N_{F}\left(X_{1}, Y_{2}\right)=0, N_{F}\left(X_{2}, Y_{2}\right)=4 F_{1}\left[X_{2}, Y_{2}\right] . \\
& N_{G}\left(X_{\alpha}, Y_{\alpha}\right)=\left(N_{\varphi_{1}}+N_{\varphi_{2}}+N_{\varphi_{1} \varphi_{2}}\right)\left(X_{\alpha}, Y_{\alpha}\right), \alpha=1,2, \\
& N_{G}\left(X_{1}, Y_{2}\right)=\left(N_{\varphi_{1} \varphi_{2}}-N_{\varphi_{1} \varphi_{2}} \circ \varphi_{1} \times \varphi_{2}\right)\left(X_{1}, Y_{2}\right) . \\
& N_{H}\left(X_{\alpha}, Y_{\alpha}\right)=\left(N_{\varphi_{1}}+N_{\varphi_{2}}-N_{\varphi_{1} \varphi_{2}}\right)\left(X_{\alpha}, Y_{\alpha}\right), \alpha=1,2, \\
& N_{H}\left(X_{1}, Y_{2}\right)=-\left(N_{\varphi_{1} \varphi_{2}}+N_{\varphi_{1} \varphi_{2}} \circ \varphi_{1} \times \varphi_{2}\right)\left(X_{1}, Y_{2}\right) .
\end{aligned}
$$

From these formulas it results:
Theorem 5.1. 1. The distribution V_{1} is involutive iff one of the following conditions is satisfied;

$$
\begin{equation*}
N_{F}\left(X_{1}, Y_{1}\right)=0 ; \quad F_{2}\left[X_{1}, Y_{1}\right]=0 ; \quad N \varphi_{2}\left(X_{1}, Y_{1}\right)=0 ; \quad \varphi_{2}\left[X_{1}, Y_{1}\right]=0 \tag{5.2}
\end{equation*}
$$

2. The distribution V_{2} is involutive iff one of the following conditions is satisfied:
$N_{F}\left(X_{2}, Y_{2}\right)=0 ; \quad F_{1}\left[X_{2}, Y_{2}\right]=0 ; \quad N \varphi_{1}\left(X_{2}, Y_{2}\right)=0 ; \quad \varphi_{1}\left[X_{2}, Y_{2}\right]=0$.
3. Both V_{1} and V_{2} are involutive iff one of the following conditions is satisfied

$$
\begin{align*}
& N_{F}=0 ; \quad F_{2}\left[X_{1}, Y_{1}\right]=F_{1}\left[X_{2}, Y_{2}\right]=0 \\
& N \varphi_{2}\left(X_{1}, Y_{1}\right)=N \varphi_{1}\left(X_{2}, Y_{2}\right)=0 ; \quad \varphi_{2}\left[X_{1}, Y_{1}\right]=\varphi_{1}\left[X_{2}, Y_{2}\right]=0 \tag{5.4}
\end{align*}
$$

4. The ac-structure G is integrable iff $N_{G}=0$ or

$$
\begin{align*}
& \left(N \varphi_{1}+N \varphi_{2}+N \varphi_{1} \varphi_{2}\right)\left(X_{\alpha}, Y_{\alpha}\right)=0, \alpha=1,2, \\
& \left(N_{\varphi_{1} \varphi_{2}}-N_{\varphi_{1} \varphi_{2}} \circ \varphi_{1} \times \varphi_{2}\right)\left(X_{1}, Y_{2}\right)=0 \tag{5.5}
\end{align*}
$$

5. The ac-structure H is integrable iff $N_{H}=0$ or

$$
\begin{align*}
& \left(N_{\varphi_{1}}+N \varphi_{2}-N_{\varphi_{1} \varphi_{2}}\right)\left(X_{\alpha}, Y_{\alpha}\right)=0, \alpha=1.2 \\
& \left(N \varphi_{1} \varphi_{2}+N_{\varphi_{1} \varphi_{2}} \circ \varphi_{1} \times \varphi_{2}\right)\left(X_{1}, Y_{2}\right)=0 \tag{5.6}
\end{align*}
$$

6. Both G and H are integrable iff $N_{G}=N_{H}=0$ or

$$
\begin{equation*}
\left(N_{\varphi_{1}}+N_{\varphi_{2}}\right)\left(X_{\alpha}, Y_{\alpha}\right)=0, \alpha=1,2, \quad N_{\varphi_{1} \varphi_{2}}=0 \tag{5.7}
\end{equation*}
$$

7. If $N_{F}=0$, then $N_{\varphi_{1}}\left(X_{2}, Y_{2}\right)=N_{\varphi_{2}}\left(X_{1}, Y_{1}\right)=0, N_{\varphi_{1} \varphi_{2}}\left(X_{\alpha}, Y_{\alpha}\right)=$ $0, \alpha=1,2$ and in this hypothesis one has.
8. a) G is integrable iff $N_{\varphi_{\alpha}}\left(X_{\alpha}, Y_{\alpha}\right)=0, \alpha=1,2$, $\left(N_{\varphi_{1} \varphi_{2}}-N_{\varphi_{1} \varphi_{2}} \circ \varphi_{1} \times \varphi_{2}\right)\left(X_{1}, Y_{2}\right)=0$.
9. b) H is integrable iff $N \varphi_{\alpha}\left(X_{\alpha}, Y_{\alpha}\right)=0, \alpha=1,2$,
$\left(N_{\varphi_{1} \varphi_{2}}+N_{\varphi_{1} \varphi_{2}} \circ \varphi_{1} \times \varphi_{2}\right)\left(X_{1}, Y_{2}\right)=0$.
10. c) Both G and H are integrable iff

$$
\begin{align*}
& N_{\varphi_{\alpha}}\left(X_{\alpha}, Y_{\alpha}\right)=0, \alpha=1,2, \quad N_{\varphi_{1} \varphi_{2}}\left(X_{1}, Y_{2}\right)=0 \tag{5.8}\\
& \text { or } N_{\varphi_{\alpha}}\left(X_{\alpha}, Y_{\alpha}\right)=0, \quad N_{\varphi_{\alpha}}\left(X_{1}, Y_{2}\right)=0, \alpha=1,2 .
\end{align*}
$$

Definition 5.1. An almost CR-structure (D, J) on a manifold M is a CR-structure [1] if for any $X, Y \in D$ one has

$$
\begin{align*}
& \text { a) }[J X, Y]+[X, J Y] \in D \tag{5.9}\\
& \text { b) }[J X, J Y]-[X, Y]-J([J X, Y]+[X, J Y])=0
\end{align*}
$$

One remarks that a) is equivalent with

$$
\text { c) }[J X, J Y]-[X, Y] \in D
$$

From here and from 5.1 it results
Theorem 5.2. 1. The almost $C R$-structure $\left(V_{1}, \varphi_{1}^{\prime}\right)$ is a $C R$-structure iff

$$
\begin{equation*}
N_{\varphi_{1} \varphi_{2}}\left(X_{1}, Y_{1}\right)=\left(N \varphi_{1}+N \varphi_{2}\right)\left(X_{1}, Y_{1}\right)=0 \tag{5.10}
\end{equation*}
$$

2. The almost $C R$-structure $\left(V_{2}, \varphi_{2}^{\prime}\right)$ is a $C R$-structure iff

$$
\begin{equation*}
N_{\varphi_{1} \varphi_{2}}\left(X_{2}, Y_{2}\right)=\left(N \varphi_{1}+N \varphi_{2}\right)\left(X_{2}, Y_{2}\right)=0 \tag{5.11}
\end{equation*}
$$

3. V_{1} is involutive and $\left(V_{1}, \varphi_{1}^{\prime}\right)$ is a CR-structure iff

$$
\begin{equation*}
N \varphi_{2}\left(X_{1}, Y_{1}\right)=0, \quad N \varphi_{1}^{\prime}\left(X_{1}, Y_{1}\right)=0 \tag{5.12}
\end{equation*}
$$

4. V_{2} is involutive and $\left(V_{2}, \varphi_{2}^{\prime}\right)$ is a $C R$-structure iff

$$
\begin{equation*}
N \varphi_{1}\left(X_{2}, Y_{2}\right)=0, \quad N \varphi_{2}^{\prime}\left(X_{2}, Y_{2}\right)=0 \tag{5.13}
\end{equation*}
$$

5. Both V_{1} and V_{2} are involutive and $\left(V_{1}, \varphi_{1}^{\prime}\right),\left(V_{2}, \varphi_{2}^{\prime}\right)$ are $C R$-structures iff

$$
\begin{equation*}
N_{F}=0, \quad N_{\varphi_{\alpha}^{\prime}}\left(X_{\alpha}, Y_{\alpha}\right)=0, \alpha=1,2 \tag{5.14}
\end{equation*}
$$

Definition 5.2. An apbc-structure (F, G, H) is called integrable if there exists an atlas on M so that the associated natural bases are adapted bases for this structure.

Theorema 5.3. An apbc-structure (F, G, H) is integrable iff one of the following conditions holds

$$
\begin{align*}
& N_{F}=N_{G}=N_{H}=0 ; N_{F}=N_{\varphi_{1}^{\prime}}=N_{\varphi_{2}^{\prime}}=0 \\
& N_{\varphi_{1} \varphi_{2}}\left(X_{1}, Y_{2}\right)=0 ; N_{\varphi_{1}}=N_{\varphi_{2}}=0 \tag{5.15}
\end{align*}
$$

Proof. If the apbc-structure (F, G, H) is integrable, then there exists an atlas on M so that in the associated natural bases, the tensor fields $F, G, H, \varphi_{1}, \varphi_{2}, \varphi_{1}^{\prime}, \varphi_{2}^{\prime}$ are given by (2.8) and hence all the conditions 5.15 are satisfied.

Conversely, if $N_{F}=N_{G}=N_{H}=0$, then from $N_{F}=0$, it results (see [11]), that the distributions V_{1} and V_{2} are involutive and so there exists an atlas on M so that the leaves of V_{1} are given locally by $x^{a}=$ const, $a=$ $1,2, \ldots, 2 n_{2}$ and x^{i}, with $i=1,2, \ldots, 2 n_{1}$, are the coordinates on them. The leaves of V_{2} are given by $x^{i}=$ const and x^{a} are the local coordinates on them. Hence in the natural bases associated to this atlas, F is given by (2.8). Then from the integrability of G and H, [8], it follows $N_{G}\left(X_{1}, Y_{1}\right)=$ $0, N_{H}\left(X_{2}, Y_{2}\right)=0$, which give us $N_{\varphi_{1}^{\prime}}=N_{\varphi_{2}^{\prime}}=0$, i.e. the ac-structures φ_{1}^{\prime} and φ_{2}^{\prime} on the leaves of V_{1} and V_{2} respectively, are integrable. Therefore we can take a new atlas on M with the new coordinates of the form $s^{p}=$ $s^{p}\left(x^{i}\right), t^{p}=t^{p}\left(x^{i}\right), p=1,2, \ldots, n_{1}, i=1,2, \ldots, 2 n_{1}$ on the leaves of V_{1} and $u^{\alpha}=u^{\alpha}\left(x^{a}\right), v^{\alpha}=v^{\alpha}\left(x^{a}\right), \alpha=1,2 \ldots, n_{2}, a=1,2, \ldots, 2 n_{2}$ on the leaves of V_{2}, so that in these coordinates φ_{1}^{\prime} and φ_{2}^{\prime} and hence $F, G, H, \varphi_{1}, \varphi_{2}$ will be given by (2.8). As from the conditions 5.152 or 5.153 it follows $N_{F}=N_{G}=N_{H}=0$, the theorem is proved.

Theorem 5.4. The apbc-structure (F, G, H) is integrable iff there exists on M a symmetric $F G H$-connection.

Proof. If the apbc-structure (F, G, H) is integrable, from the integrability of F it follows (see [11]), that exists a symmetric F-connection ∇^{0} on M. Then, considering the connection

$$
\begin{equation*}
\nabla_{X}=\frac{1}{2}\left(\nabla_{X}^{0}-G \circ \nabla_{X}^{0} \circ G\right) \tag{5.16}
\end{equation*}
$$

i.e. the conjugate of ∇^{0} with respect to G, we obtain $\nabla F=\nabla G=\nabla H=0$. Hence ∇ is a (F, G, H)-connection. For the torsion of ∇ we get

$$
\begin{equation*}
T(X, Y)=\frac{1}{2}\left[\left(\nabla_{X}^{0} G\right)(G Y)-\left(\nabla_{Y}^{0} G\right)(G X)\right] \tag{5.17}
\end{equation*}
$$

But ∇ being a G-connection, from [8], we have for N_{G}

$$
\begin{equation*}
N_{G}(X, Y)=T(X, Y)+G(T(G X, Y))+G(T(X, G Y))-T(G X, G Y) \tag{5.18}
\end{equation*}
$$

and substituting T from 5.17, we obtain finally,

$$
\begin{equation*}
N_{G}(X, Y)=2 T(X, Y) \tag{5.19}
\end{equation*}
$$

Hence, G being integrable, one has $N_{G}=0$ and so $T=0$, i.e. ∇ is a symmetric F, G, H-connection.

Conversely, if there exists on M a symmetric (F, G, H)-connection ∇, then from the expressions 5.18 , for N_{G} and the similar for N_{F} and N_{H}, it follows $N_{F}=N_{G}=N_{H}=0$, i.e. the apbc-structure (F, G, H) is integrable. From the previous Theorem, it results.

Theorem 5.5. For a Riemannian mapc-structure $\left(F, G, H, g_{1}\right)$ on M, with the apbc-structure (F, G, H) integrable, one obtains;

1. $\left(F, g_{1}\right)$ and $\left(F, g_{2}\right)$ are respectively Riemannian and pseudo- Riemannian locally product structures.
2. $\left(G, g_{1}\right),\left(H, g_{1}\right)$ and $\left(G, g_{2}\right),\left(H, g_{2}\right)$ are respectively Hermitian and indefinite Hermitian structures.
3. $\left(\varphi_{1}^{\prime}, \gamma_{1}^{\prime}\right)$ and $\left(\varphi_{2}^{\prime}, \gamma_{2}^{\prime}\right)$ are Hermitian structures on the leaves of the distributions V_{1} and V_{1} respectively.
4. Integrability for the almost symplectic structures ω_{1} and ω_{2}. For the exterior differential of the as-structures ω_{1} and ω_{2}, taking $X_{\alpha}, Y_{\alpha}, Z_{\alpha} \in V_{\alpha}, \alpha=1,2$, we obtain

$$
\begin{align*}
& d \omega_{1}\left(X_{1}, Y_{1}, Z_{1}\right)=d \psi_{1}\left(X_{1}, Y_{1}, Z_{1}\right) \\
& 3 d \omega_{1}\left(X_{1}, Y_{1}, Z_{2}\right)=\left(\mathcal{L}_{Z_{2}} \psi_{1}\right)\left(X_{1}, Y_{1}\right)-\psi_{2}\left(Z_{2},\left[X_{1}, Y_{1}\right]\right) \\
& 3 d \omega_{1}\left(X_{1}, Y_{2}, Z_{2}\right)=\left(\mathcal{L}_{X_{1}} \psi_{2}\right)\left(Y_{2}, Z_{2}\right)+\psi_{1}\left(X_{1},\left[Y_{2}, Z_{2}\right]\right) \\
& d \omega_{1}\left(X_{2}, Y_{2}, Z_{2}\right)=d \psi_{2}\left(X_{2}, Y_{2}, Z_{2}\right) \\
& d \omega_{2}\left(X_{1}, Y_{1}, Z_{1}\right)=d \psi_{1}\left(X_{1}, Y_{1}, Z_{1}\right) \tag{6.1}\\
& 3 d \omega_{2}\left(X_{1}, Y_{1}, Z_{2}\right)=\left(\mathcal{L}_{Z_{2}} \psi_{1}\right)\left(X_{1}, Y_{1}\right)+\psi_{2}\left(Z_{2},\left[X_{1}, Y_{1}\right]\right) \\
& 3 d \omega_{2}\left(X_{1}, Y_{2}, Z_{2}\right)=-\left(\mathcal{L}_{X_{1}} \psi_{2}\right)\left(Y_{2}, Z_{2}\right)+\psi_{1}\left(X_{1},\left[Y_{2}, Z_{2}\right]\right) \\
& d \omega_{2}\left(X_{2}, Y_{2}, Z_{2}\right)=-d \psi_{2}\left(X_{2}, Y_{2}, Z_{2}\right)
\end{align*}
$$

From here it results
Theorem 6.1. 1. The as-structure ω_{1} is integrable iff

$$
\begin{align*}
& d \psi_{1}\left(X_{1}, Y_{1}, Z_{1}\right)=0,\left(\mathcal{L}_{Z_{2}} \psi_{1}\right)\left(X_{1}, Y_{1}\right)=\psi_{2}\left(Z_{2},\left[X_{1}, Y_{1}\right]\right) \\
& \left(\mathcal{L}_{X_{1}} \psi_{2}\right)\left(Y_{2}, Z_{2}\right)=-\psi_{1}\left(X_{1},\left[Y_{2}, Z_{2}\right]\right), d \psi_{2}\left(X_{2}, Y_{2}, Z_{2}\right)=0 \tag{6.2}
\end{align*}
$$

2. The as-structure ω_{2} is integrable iff

$$
\begin{align*}
& d \psi_{1}\left(X_{1}, Y_{1}, Z_{1}\right)=0, \quad \mathcal{L}_{Z_{2}} \psi_{1}\left(X_{1}, Y_{1}\right)=-\psi_{2}\left(Z_{2},\left[X_{1}, Y_{1}\right]\right), \\
& \mathcal{L}_{X_{1}} \psi_{2}\left(Y_{2}, Z_{2}\right)=\psi_{1}\left(X_{1},\left[Y_{2}, Z_{2}\right]\right), \quad d \psi_{2}\left(X_{2}, Y_{2}, Z_{2}\right)=0 . \tag{6.3}
\end{align*}
$$

3. Both ω_{1} and ω_{2} are integrable iff

$$
\begin{align*}
& N_{F}=0, \quad d \psi_{\alpha}\left(X_{\alpha}, Y_{\alpha}, Z_{\alpha}\right)=0, \alpha=1,2, \\
& \mathcal{L}_{Z_{2}} \psi_{1}\left(X_{1}, Y_{1}\right)=\mathcal{L}_{X_{1}} \psi_{2}\left(Y_{2}, Z_{2}\right)=0 . \tag{6.4}
\end{align*}
$$

It results from here
Theorem 6.2. If for a Riemannian mapbc-structure $\left(F, G, H, g_{1}\right)$, the associated 2 -forms ω_{1} and ω_{2} are integrable, then:

1. $\left(F, g_{1}\right)$ and $\left(F, g_{2}\right)$ are respectively Riemannian and pseudo- Riemannian locally product structures.
2. $\left(G, g_{1}\right),\left(H, g_{1}\right)$ and $\left(G, g_{2}\right),\left(H, g_{2}\right)$ are respectively almost Kähler and indefinite almost Kähler structures.
3. $\left(\varphi_{1}^{\prime}, \gamma_{1}^{\prime}\right)$ and $\left(\varphi_{2}^{\prime}, \gamma_{2}^{\prime}\right)$ are almost Kähler structures on the leaves of V_{1} and V_{2} respectively.
4. Each vector field $Z_{2} \in V_{2}$ (resp. $X_{1} \in V_{1}$) generates a 1-parameter group of symplectomorphisms between the leaves of V_{1} (resp. V_{2}).

In particular, from Theorem 5.2 and 6.2 and from [8,II,p.148] it follows
Theorem 6.3 If for a Riemannian mapbc-structure (F, G, H, g_{1}), on M, the structures almost complex G, H and almost symplectic ω_{1}, ω_{2} are integrable then:

1. $\left(F, g_{1}\right)$ and $\left(F, g_{2}\right)$ are respectively Riemannian and pseudo- Riemannian locally decompozable structures.
2. $\left(G, g_{1}\right),\left(H, g_{1}\right)$ and $\left(G, g_{2}\right),\left(H, g_{2}\right)$ are respectively Kahler and indefinite Kähler structures.
3. $\left(\varphi_{1}^{\prime}, \gamma_{1}^{\prime}\right)$ and $\left(\varphi_{2}^{\prime}, \gamma_{2}^{\prime}\right)$ are Kähler structures on the leaves of V_{1} and V_{2} respectively.
4. Example. Let N be a manifold, $M=T N$ the total space of the tangent bundle $\pi: T N \rightarrow N$ and $V T N=$ Ker $T \pi$ the vertical subbundle of $T N$. Denote by $\left(x^{i}\right),\left(x^{i}, y^{i}\right)$ the local coordinates on N and $T N$ and by $(\partial i),(\partial i, \dot{\partial} i)$ the corresponding local bases, where $\partial_{i}=\frac{\partial}{\partial x^{i}} ; \dot{\partial}_{i}=\frac{\partial}{\partial y^{i}}, i=$
$1,2, \ldots, n$. Also we denote by $\left(d^{i}\right),\left(d^{i}, \dot{d}^{i}\right)$, where $d^{i}=d x^{i}, \dot{d}^{i}=d y^{i}$, the dual local bases on N and $T N$. Setting for each 1-form $\alpha \in \mathcal{D}_{1}(N)$, given locally by $\alpha(x)=\alpha_{i}(x) d^{i}, \gamma \alpha(z)=\alpha_{i}(x) y^{i}$, where $z=(x, y) \in T_{x} N$, we obtain a class of functions on $T N$ with the property that every vector field $A \in \mathcal{D}^{1}(T N)$ is uniquely determined by its values on these functions. The mappings γ may be extended to tensor fields $S \in \mathcal{D}_{1}^{1}(N)$ by putting

$$
\begin{equation*}
\gamma S(\gamma \alpha)=\gamma(\alpha \circ S), \quad \forall \alpha \in \mathcal{D}_{1}(N) \tag{7.1}
\end{equation*}
$$

Locally, if $S(x)=S_{j}^{i}(x) \partial_{i} \otimes d^{j}$, then $\gamma S(z)=S_{j}^{i}(x) y^{j} \partial_{i}$, hence γS is a vertical vector field on $T N$. Let then ∇ be a linear connection and X a vector field on N. Setting

$$
\begin{equation*}
X^{h}(\gamma \alpha)=\gamma\left(\nabla_{X} \alpha\right), X^{v}(\gamma \alpha)=\alpha(X) \circ \pi, \quad \forall \alpha \in \mathcal{D}_{1}(N) \tag{7.2}
\end{equation*}
$$

we obtain two vector fields on $T N$ called respectively the horizontal and the vertical lifts of X. We have the following useful relations.

$$
\begin{align*}
& f^{h}=f^{v}=f \circ \pi,(f X)^{h}=f^{h} X^{h},(f X)^{v}=f^{v} X^{v} \\
& {\left[X^{h}, Y^{h}\right]=[X, Y]^{h}-\gamma R_{X Y}, \quad\left[X^{h}, Y^{v}\right]=\left(\nabla_{X} Y\right)^{v},\left[X^{v}, Y^{v}\right]=0} \tag{7.3}
\end{align*}
$$

where $f \in C^{\infty}(N), X, Y \in \mathcal{D}^{1}(N)$ and R is the curvature tensor of ∇.
Setting

$$
\begin{equation*}
F\left(X^{h}\right)=X^{h}, \quad F\left(X^{v}\right)=-X^{v}, \quad \forall X \in \mathcal{D}^{1}(N) \tag{7.4}
\end{equation*}
$$

we obtain an ap-structure F on $T N$, whose +1 and -1 eigendistributions (subbundles) are respectively the horizontal distribution $V_{1}=H T N$ associated to connection ∇ and the vertical distribution $V_{2}=V T N$ of the tangent bundle $T N$. For $f \in \mathcal{D}_{1}^{1}(N)$ and $g \in \mathcal{D}_{2}^{0}(N)$, we define the horizontal (h) and vertical (v) lifts by

$$
\begin{align*}
& f^{h}\left(X^{h}\right)=f(X)^{h}, f^{h}\left(X^{v}\right)=0, ; f^{v}\left(X^{h}\right)=0, f^{v}\left(X^{v}\right)=f(X)^{v} \tag{7.5}\\
& g^{h}\left(X^{h}, Y^{h}\right)=g(X, Y)^{v}, g^{h}\left(X^{h}, Y^{v}\right)=g^{h}\left(X^{v}, Y^{h}\right)=g^{h}\left(X^{v}, Y^{v}\right)=0 \\
& g^{v}\left(X^{h}, Y^{h}\right)=g^{v}\left(X^{h}, Y^{v}\right)=g^{v}\left(X^{v}, Y^{h}\right)=0, g^{v}\left(X^{v}, Y^{v}\right)=g(X, Y)^{v}
\end{align*}
$$

Let now (f, g) be an almost Hermitian structure on N and $\omega=g \circ I \times f$ the associated 2-form. Setting

$$
\begin{equation*}
F=I^{h}-I^{v}, \quad G=f^{h}+f^{v}, \quad H=f^{h}-f^{v} \tag{7.6}
\end{equation*}
$$

we obtain the ap-structure F given by (7.4) and two ac-structures G and H, which satisfy the conditions (2.1), i.e. determine an apbc-structure on $T N$. Putting then

$$
\begin{equation*}
g_{1}=g^{h}+g^{v}, g_{2}=g^{h}-g^{v}, \omega_{1}=\omega^{h}+\omega^{v}, \omega_{2}=\omega^{h}-\omega^{v} \tag{7.7}
\end{equation*}
$$

we get that g_{1}, g_{2} determine Riemannian and pseudo-Riemannian structures respectively and ω_{1}, ω_{2} as-structures on $T N$, which satisfy the conditions (3.1) and (3.2). Hence, we have

Theorem 7.1 Given an almost Hermitian structure (f, g) with the associated 2-form ω and a linear connection ∇ on N, one obtains by the formulas (7.6) and (7.7) a Riemannian mapbc-structure (F, G, H, g_{1}), with the associated metric g_{2} and two as-structures $\left(\omega_{1}, \omega_{2}\right)$ on the manifold $T N$. The pair of the associated supplementary cc-structures is given by $\varphi_{1}=f^{h}, \varphi_{2}=f^{v}$, the pairs of induced almost Hermitian structures on the distributions $V_{1}=H T M$ and $V_{2}=V T M$ by $\left(f^{h}, g^{h}\right) / V_{1},\left(f^{v}, g^{v}\right) / V_{2}$ and the supplementary almost $C R$-structures by $\left(V_{1}, f^{h} / V_{1}\right),\left(V_{2}, f^{v} / V_{2}\right)$.

For a connection ∇ on N we define the diagonal lift D, (see [6]), by

$$
\begin{align*}
& D_{X^{h}} Y^{h}=\left(\nabla_{X} Y\right)^{h}, D_{X^{h}} Y^{v}=\left(\nabla_{X} Y\right)^{v}, \\
& D_{X^{v}} Y^{h}=D_{X^{v}} Y^{v}=0, \forall X, Y \in \mathcal{D}^{1}(N) \tag{7.8}
\end{align*}
$$

The nonvanishing components of the torsion and the curvature tensor fields of D, are given by

$$
\begin{align*}
& \mathcal{T}\left(X^{h}, Y^{h}\right)=T(X, Y)^{h}+\gamma R_{X Y} \\
& \mathcal{R}_{X^{h} Y^{h}} Z^{h}=\left(R_{X Y} Z\right)^{h}, R_{X^{h} Y^{h}} Z^{v}=\left(R_{X Y} Z\right)^{v} \tag{7.9}
\end{align*}
$$

where T and R are the torsion and curvature tensors of ∇. After that, for the covariant derivatives with respect to D, of F, G, H, g_{α} and $\omega_{\alpha}, \alpha=1,2$ we obtain

$$
\begin{align*}
& D F=0 ; D_{X^{h}} G=\left(\nabla_{X} f\right)^{h}+\left(\nabla_{X} f\right)^{v}, D_{X^{v}} G=0 ; \\
& D_{X^{h}} H=\left(\nabla_{X} f\right)^{h}-\left(\nabla_{X} f\right)^{v}, D_{X^{v}} H=0 ; \\
& D_{X^{h}} g_{1}=\left(\nabla_{X} g\right)^{h}+\left(\nabla_{X} g\right)^{v}, D_{X^{v}} g_{1}=0 ; \tag{7.10}\\
& D_{X^{h}} g_{2}=\left(\nabla_{X} g\right)^{h}-\left(\nabla_{X} g\right)^{v}, D_{X^{v}} g_{2}=0 ; \\
& D_{X^{h}} \omega_{1}=\left(\nabla_{X} \omega\right)^{h}+\left(\nabla_{X} \omega\right)^{v}, D_{X^{v}} \omega_{1}=0 ; \\
& D_{X^{h}} \omega_{2}=\left(\nabla_{X} \omega\right)^{h}-\left(\nabla_{X} \omega\right)^{v}, D_{X^{v}} \omega_{2}=0 .
\end{align*}
$$

Hence, $D F=0$ always, $D G=D H=0$, iff $\nabla f=0, D g_{\alpha}=0, \alpha=1,2$ iff $\nabla g=0$ and $D \omega_{\alpha}=0, \alpha=1,2$ iff $\nabla \omega=0$. So we have

Theorem 7.2. The diagonal lift D on $T N$, for a connection ∇ on N, is a $\left(F, G, H, g_{1}\right)$-connection iff ∇ is a (f, g)-connection, i.e. iff ∇ is given by

$$
\begin{equation*}
\nabla=\psi_{f} \circ \psi_{g}\left(\nabla^{0}\right)+\chi_{f} \circ \chi_{g}(\tau) \tag{7.11}
\end{equation*}
$$

with $\nabla^{0} \in C(N)$ fixed and $\tau \in \mathcal{D}_{2}^{1}(N)$ arbitrary.
For the Nijenhuis tensors of F, G and H one obtains

$$
\begin{align*}
& N_{F}\left(X^{h}, Y^{h}\right)=4 \gamma R_{X Y}, N_{F}\left(X^{h}, Y^{v}\right)=0, N_{F}\left(X^{v}, Y^{v}\right)=0 \tag{7.12}\\
& N_{G}\left(X^{h}, Y^{h}\right)=N_{f}(X, Y)^{h}+\gamma\left[R_{X Y}-R_{f X f Y}+f \circ\left(R_{f X Y}+R_{X f Y}\right)\right] \\
& N_{G}\left(X^{h}, Y^{v}\right)=\left[\left(\nabla_{f X} f-f \circ \nabla_{X} f\right)(Y)\right]^{v}, N_{G}\left(X^{v}, Y^{v}\right)=0 \\
& N_{H}\left(X^{h}, Y^{h}\right)=N_{f}(X, Y)^{h}+\gamma\left[R_{X Y}-R_{f X f Y}-f \circ\left(R_{f X Y}+R_{X f Y}\right)\right], \\
& N_{H}\left(X^{h}, Y^{v}\right)=-\left[\left(\nabla_{f X} f+f \circ \nabla_{X} f\right)(Y)\right]^{v}, N_{H}\left(X^{v}, Y^{v}\right)=0 .
\end{align*}
$$

From here it results.

Theorem 7.3. 1. The ap-structure F is integrable iff $R=0$;
2. The ac-structure G is integrable iff

$$
\begin{align*}
& N_{f}=0, \nabla_{f X} f-f \circ \nabla_{X} f=0 \\
& R_{X Y}-R_{f X f Y}+f \circ\left(R_{f X Y}+R_{X f Y}\right)=0 \tag{7.13}
\end{align*}
$$

3. The ac-structure H is integrable iff

$$
\begin{align*}
& N_{f}=0, \nabla_{f X} f+f \circ \nabla_{X} f=0 \\
& R_{X Y}-R_{f X f Y}-f \circ\left(R_{f X Y}+R_{X f Y}\right)=0 \tag{7.14}
\end{align*}
$$

4. Both the ac-structure G and H are integrable iff

$$
\begin{equation*}
N_{f}=0, \nabla f=0, R_{X Y}-R_{f X f Y}=0 \tag{7.15}
\end{equation*}
$$

5. The apbc-structure (F, G, H) is integrable iff

$$
\begin{equation*}
N_{f}=0, \nabla f=0, R=0 \tag{7.16}
\end{equation*}
$$

For the exterior derivative of the 2 -forms ω_{1} and ω_{2} we obtain

$$
\begin{aligned}
& d \omega_{1}\left(X^{h}, Y^{h}, Z^{h}\right)=d \omega(X, Y, Z)^{h}, 3 d \omega_{1}\left(X^{h}, Y^{h}, Z^{v}\right)=-\gamma\left(i_{Z} \omega \circ R_{X Y}\right), \\
& 3 d \omega_{1}\left(X^{h}, Y^{v}, Z^{v}\right)=\left(\nabla_{X} \omega(Y, Z)\right)^{v}, d \omega_{1}\left(X^{v}, Y^{v}, Z^{v}\right)=0 ; \\
& d \omega_{2}\left(X^{h}, Y^{h}, Z^{h}\right)=d \omega(X, Y, Z)^{h}, 3 d \omega_{2}\left(X^{h}, Y^{h}, Z^{v}\right)=\gamma\left(i_{Z} \omega \circ R_{X Y}\right), \\
& 3 d \omega_{2}\left(X^{h}, Y^{v}, Z^{v}\right)=-\left(\nabla_{X} \omega\right)(Y, Z)^{v}, d \omega_{2}\left(X^{v}, Y^{v}, Z^{v}\right)=0 .
\end{aligned}
$$

So, one has
Theorem 7.4. The 2-forms $\omega_{\alpha}, \alpha=1,2$ are simultaneous integrable, namely iff

$$
\begin{equation*}
d \omega=0, \nabla \omega=0, R=0 . \tag{7.18}
\end{equation*}
$$

From (7.16) and (7.18) one obtains.
Theorem 7.5. The apbc-structure (F, G, H) and the as-structures ω_{1}, ω_{2} are simultaneous integrable iff

$$
\begin{equation*}
N_{f}=d \omega=0, \nabla f=\nabla \omega=0, R=0, \tag{7.19}
\end{equation*}
$$

with other words iff (f, g) is a Kahler structure and $\nabla a(f, g)$-connection with vanishing curvature on N.

In particular, these conditions are satisfied if (f, g) is a Kahler structure with vanishing curvature on N and ∇ the Levi-Civita connection of g.

REFERENCES

1. Alekseevsky, D.; Spiro, A. - Invariant CR-structures on compact homogeneous manifolds, Hokkaido Math. J. 32(2003), 209-276.
2. Bonome, A.; Castro, R.; Garcia-Rio, E.; Hervella, L.M.; Matsushita, Y. Almost complex manifolds with holomorphic distributions. Rendiconti di Matematica, Seria VII, Volume 14, Roma (1994), 567-589.
3. Cruceanu, V. - Certaines structures sur le fibré tangent, Proc. Inst. Math Iaşi, Romania, 1974, 41-49.
4. Cruceanu, V. - Connections compatibles avec certaines structures sur un fibré vectoriel banachique, Czechoslovak Math. J. 24(99), 1974, 126-142.
5. Cruceanu, V.; Fortuny, P.; Gadea, P. - A Survey on Paracomplex Geometry, Rocky Mountain J. Math v. 26, n. 1 (1996), 83-115.
6. Cruceanu, V. - A new Definition for Certain Lifts on a Vector Bundle, An. St. Univ. ,,Al.I.Cuza" Iaşi, tom XLII, suppl. s.I-a, 42(1996), 59-72.
7. Hsu, C.J. - On some structures which are similar the quaternion structure, Tohoku Math. J. v.12(1960), 403-428.
8. Kobayashi, S., Nomizu, K. - Foundations of Differential Geometry II, WileyInterscience, New-York, 1969.
9. Libermann, P. - Sur le probleme d'équivalence de certaines structures infinitésimales, Ann. Math. Pure Appl. 4(36), 1954, 27-120.
10. Maksym, A.; Zmurek, A. - Manifold with the 3-structure, Ann. Univ. Marie-CurieSkladowska, v. XLI(1987), 51-63.
11. Yano, K.; Kon, M. - Structures on Manifolds, Series in Pure Mathematics, v. 3, World Scinetific Publishing Co., 1984.

Faculty of Mathematics, "Al. I. Cuza" University, Bd. Carol I, No. 11, 700506, Iasi, ROMÂNIA,

[^0]: *This paper was partially supported by CNCSIS-Romania

