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1. Introduction. The almost product bicomplex (apbc)-structures,
together with other important structures on a manifold, were considered by
LIBERMANN [9], Hsu [7], CRUCEANU [3], MAKSYM and ZMUREK [10] and
others. But a more complete and consistent analyze of these structures was
made by Bonome, Castro, Garcia-Rio, Hervella and Matsushita in the joint
paper [2].

In this work we study the equivalence of an apbc-structure with other
important structures on a manifold, metrics and linear connections compati-
ble with such a structure and the integrability of the metric apbc-structures.
An example of a Riemannian apbc-structure on the total space of the tan-
gent bundle to an almost Hermitian manifold is also analyzed.

2. Almost product bicomplex structures. Let M be a paracom-
pact and connected C'*°-manifold, F (M) the ring of real functions, D} (M)

*This paper was partially supported by CNCSIS-Romania
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the F(M)-module of (r, s)-tensor fields and D(M) the F (M )-tensor algebra
on M.

Definition 2.1. An almost product bicomplex (apbc)-structure on the
manifold M, is a triple (F,G, H) of (1,1)-tensor fields which satisfies the
conditions

(2.1) —F?=G*=H?>=FoGoH=—I,F+#+I.

It follows that F' is an almost product (ap)-structure and G, H are al-
most complex (ac)-structures on M, which satisfy the relations

(2.2) FoG =GoF = H,GoH = HoG=—F,HoF = FoH =G, F # +I.

Denote by V; = F* and V5 = F~, the eigendistributions (or subbundles
of T M), corresponding to eigenvalues +1 and by F; and F» the associated
projectors to F, i.e.

I+ F I—F
2. = Fh=—
( 3) 1 9 2 9
Setting then
(2.4) p1=GoF, ¢2=Golky,

one obtains

propa=prop1 =0, pf = —F, 93 = I,

(2.5) ,
0+ @3 =—1I, o} + 1 =95+ 2 =0.

Definition 2.2. An almost cocomplex (acc)-structure on M is a (1,1)-
tensor field ¢ satisfying ¢® 4+ ¢ = 0. Two (acc)-structures ¢; and o are
supplementary if ¢3 + @3 = —1I.

From (2.4) and (2.5) we obtain

(2.6) F=¢3—¢l, G=p1+¢s, H=p1-p
Then, from (2.2) it follows that G and H preserve the distributions V;

and V5 and so, putting ¢} = G/Vi, ¢y = G/Va, one has ¢|> = —Iy, ph* =
—1Iy, i.e. ¢} and ¢}, are complex structures on Vi and Vs respectively.
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Definition 2.3. An almost CR-structure [1] on a manifold M is a pair
(D, J), where D is a distribution on M and J an almost complex structure
on D. Two almost CR-structures (D1, J;) and (D3, J2) are supplementary
if Dy and D5 are supplementary distributions on M.

It follows that (Vi,¢)) and (V4,¢}) are supplementary almost CR-
structures on M and from (2.4) one has

(2.7) G=pioF+¢hoF,, H=¢|oF —¢yol,.
From the previous considerations it results.

Theorem 2.1. An apbc-structure on the manifold M may be defined
by one of the following equivalent structures:

1) A triple formed by an ap-structure F and two ac-structures G and H
which satisfy FoGo H = —1,F # +1.

2) A pair formed by an ap-structure F' and an ac-structure G (or H),
which commute.

3) Two commuting ac-structures, G and H, with G # +H.
4) Two supplementary acc-structures p1 and pa, with @1 # 0, 1.
5) Two supplementary almost C R-structures (V1,¢}) and (Va, ©h).

V1 and V5 being complex distributions, it results dim V; = 2n;,dim V5 =
2ng and so dim M = 2(n1+ng). In particular, if F' is an almost paracomplex
(apc)-structure [5], on M, i.e. F? = I,TrF = 0, then ny = ny = n and
hence dim M = 4n.

Definition 2.4. An adapted basis, for an apbc-structure (F,G, H) in
x € M, is a basis (€;, €n,+is €as €nyta), With e; € Vi, ep,4i = G(e;),eq €
Vo, enpta = G(eg),i=1,2,...,n1,a=1,2,... no.

In an adapted basis, the tensor fields F, G, H, 1 and ¢s have the ma-
trices

_ 12711 0 _ 90,1 0 _ 90,1 0
F_[ 0 —Iznz]’G_[O ©h H=1 —py |’

/
ey O 10 0
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with
;0 =1, ;0 =1,
(29) ¥1 = |: Inl 0 y P2 = Ing 0 .
The change of the adapted bases are given by matrices of the form
1A 0 . _la —b |l r —q
s r=[4 0] wmas [0 H]so[2 )

and a + b € GL(n1,C),p + iq € GL(n2,C).
It follows from here.

Theorem 2.2. The structural group of the tangent bundle of a manifold
M endowed with an apbc-structure is reducible to the real representation
Y(2n1,R) x X(2n2,R) of the direct product GL(n1,C) x GL(n2,C).

3. Metric and symplectic structures compatible with an apbc-
structure. Let h be a metric structure on M and

(3.1) gr=ho(IXI+FxF+GxG+HxH), gg=giolxF,
. wi=gi1ol xG, wy=giol x H.

One obtains

Gou o F X F=g,0GXxXG=ga0H X H = g,,

3.2
(3:2) Wa o P X F=wa,0GXG=waoHXH=w,, a=1,2,

i.e. go are metric and w, are almost symplectic structures on M, compatible
with the apbe-structure (F, G, H).

In particular, if & is a Riemannian structure then g; is also Riemannian
and g is pseudo-Riemannian structure of signature (ni, n2).

Denoting then

(3.3) Y1 =91/Vi x Vi, 75 = g2/ Va x Vs,

we obtain two metrics 7] on Vi and 74 on V,, which are Riemannian in the
same time with g1 and satisfy

(3.4) Voo © Py X Py =Yy @ =1,2.
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Considering

(3.5) Y1 =wi0Fy X FY, 1o =wyo Fy X Fy,
we obtain two degenerate 2-forms on M and we have
(3.6) w1 = P1+ P2, wr =P — o
After that, setting:

(3.7) Y1 =wi/Vi x Vi, py = we/Va X Va,

one obtains two symplectic forms on V; and V5, which satisfy

(3.8) Vo © Yo X P =Vo, a=12.

Definition 3.1. We call the set (F,G, H,g1), which satisfy (2.1) and
(3.1), a metric almost product bicomplex (mapbc)-structure on M and
g2, w1, w2 the associated metric and almost symplectic structures.

Therefore, to a Riemannian mapbc-structure (F, G, H, g1) we will asso-
ciate the follows structures: the Riemannian ap-structure (F,g;) with the
associated pseudo Riemannian structure go, the pseudo-Riemannian ap-
structure (F, g2) with the associated Riemannian structure g;, the almost
Hermitian structures (G, g1) and (H, g1) with the associated almost sym-
plectic structures wi and wy respectively, and the indefinit almost Hermitian
structures (G, g2) and (H, g2) with the associated almost symplectic struc-
tures wo and w; respectively. We will have also, on the distributions V,,
the Hermitian structures (p],,~/,) with the associated symplectic structures

faa=1,2.

Definition 3.2. An adapted basis for the Riemannian mapbc-structure
(F,G,H,g) is an adapted basis for the abpc-structure (F, G, H), which is
orthonormal with respect to g;.

In such a basis the matrices of g1, g2, w1 and wo coincide with the ma-
trices of I, F, G, H respectively. From here and the Theorem 2.2, it follows

Theorem 3.1. The structural group of the tangent bundle for a mani-
fold M endowed with a Riemannian mapbc-structure is reducible to the real
representation SO(2n1) x SO(2n2) of the direct product U(ny, C) xU(ng, C).
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4. Connections compatible with an apbc-structure. For to give
a more geometrical character to our considerations, we will use from the
beginning the following important remark. If VY is a fixed connection on
M, then for each connection V there exists a single tensor field 7 € D3 (M)
so that V = V¥ + 7. With other words, the set C(M) of linear connections
on M is an F(M)-affine module [4], associated to the F(M)-linear module
Di(M).

Considering now an ap-structure F on M and setting for V. € C(M), T €
DI(M), X € DL(M),

(41) Yp(V)x = é(vx +FoVxoF) xr(r)x = %(TX +ForxokF),
we get that ¢¥p(V) € C(M), xr(7) € DI(M) and

(4.2) Vg =1vp, Xp=xr Yr(V+7)=0p(V)+xr(r).

It follows from here that ¢ is the F(M)-affine projector on C'(M) associ-
ated to the F(M)-linear projector xr on D3(M).

Definition 4.1. A linear connection V on M is called compatible with
the ap-structure F,or is a F-connection, if VF = 0.

From (4.1) and (4.2) it follows that VF = 0 is equivalent with ¢ p(V) =
V and so with Cp(M) = Imiyr. Hence we have

Theorem 4.1. The set Cp(M) of connection on M, compatible with
the ap-structure F, is the affine submodule of C(M) which coincides with
the image of the affine projector ¢p.

Considering on C'(M) the conjugation with respect to F, i.e. the auto-
morphism kp : C(M) — C(M) given by

(4.3) kp(V)x =FoVxoF, YVWeC(M),X ecDY(M),
we obtain
(1.4) Vr(V) = 5(V + 5p(V).

Hence kp is the affine symmetry of the affine module C' (M), with re-
spect to affine submodule C'r (M), made parallel with the linear submodule
Ker xr and 9 is the mean connection of V and its conjugate xr(V), with



7 ALMOST PRODUCT BICOMPLEX STRUCTURES ON MANIFOLDS 105

respect to F. We will call ¢p (V) the F'-connection associated to V, with re-
spect to ap-structure F'. Using the projectors F; and Fb, the F-connection
(V) may be also given by

2
(4.5) Vp(V)x =Y FaoVxoF, XeD'(M).

a=1

But being a F-connection, (V) preserves the subbundles V;, V5 and in-
duces on them the connections

[e%
(4.6) VxYy=FooVxY,, X €D (M),Y, € Va,a=1,2.

and so we have
2 «
(47) br(V)x =Y VyoF,
a=1

Let VY be a fixed connection on M. Since Cp(M) = Imar then, for
each connection V € Cp(M), there exists V' € C(M) so that V = ¢ p(V').
After that, there exists 7 € Di(M) so that V' = V° + 7. Therefore, V =
Yr(VY + 1) and from (4.2) it results

Theorem 4.2. The set Cp(M) of connections V on M compatible with
the ap-structure F' is given by

(4.8) V =¢p(V?) + xp(7),

where V is a fized connection and T an arbitrary (1.2)-tensor field on M.

With other words, Cr(M) is the affine submodule of C(M) passing
through the F-connection ¥r(VY) and having the direction given by the
linear submodule I'mx g of Di(M). Similarly considering an ac-structure G
on M and setting for V. € C(M),r € Di(M) and X € DY(M),

1 1
(4.9) va(V)x = §(VX —GoVxoQ), xa(r)x = §(TX —Gorxo@),
we obtain

(4.10) Ve =va, Xa=xa Ya(V+T1)=1va(V)+ xa(r).
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After that, for the set of G-connections and the conjunction with respect
to G, we have Cg(M) = Imig,ka(V)x = —G o Vx o G and so,

(1.11) Ya(V) = 3V + rg(V)).

Finally, the affine submodule C(M) of G-connections is given by
(4.12) V =96(V°) + xa(7),

with fixed VY € C(M) and arbitrary 7 € Di(M).

Definition 4.2. A connection V is called compatible with the apbc-
structure (F,G, H) or is a (F, G, H)-connection on M, if it satisfies

(4.13) VF =VG=VH=0.
By an easy calculation we obtain

Theorem 4.3. A connection V on M is a (F,G, H)-connection iff it
satisfies one of the following conditions:

1. Visa (F,G) ora (G,H) or a (H, F)-connection,

2. V is a (p1,p2)-connection,

1 2
3. There exist a ¢! -connection V on Vi and a ¢l-connection V on Va so
that

1 2
(4.14) Vx =VxoF +VxoF,, VYXeDYM).

From the commutativity of the composition for F,G, H it follows the
commutativity for the composition of ¥p,¥qg,¥m; of xXr,xg, xg and of
Kk, kg, k. After that ¥p and Yg being affine projectors associated to
linear projectors yr and x¢ it results that ¥ o ¥ is the affine projector
associated to linear projector xr o xg, i.e.

(4.15) YpoYa(V+71)=1¢rota(V)+ xroxa(T)

From here one obtains
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Theorem 4.4. The set Cpar (M) of connections compatible with the
apbe-structure (F,G, H) is given by

(4.16) V = ¢r 0 pa(V?) + xr 0 xa(T),

with VO € C(M) fized and 7 € D3(M) arbitrary.

Taking here 7 = 0, it follows that an apbc-structure (F,G, H) assign
to each connection VY € C(M) a (F,G, H)-connection V = g o 9g(V°)
which may be written also in the form

(4.17) V= i(vo +kr (V) + £a(V0) + £ (V)

i.e. V is the mean connection of VO and its conjugate connections with
respect to F,G and H.

Now let g be a metric on M, considered as a mapping from D'(M)
to D1(M) which assigns to a vector field X the 1-form « given by a(Y) =
g(X,Y), for any vector field Y. Setting then, for V € C(M) and 7 € D (M),

1 _ 1 _
(4.18) ¥y(V)x = 5(Vx +9 o Vxog), xo(r)x = 5(rx +g ' o7x0g),
we obtain as for an ap-structure F', the following

Theorem 4.5. The set Cy(M) of connections on M compatible with a
metric g (i.e. Vg =0) are given by

(4.19) V = 14(V) + x4(7),
with fired V° € C(M) and arbitrary 7 € DI(M).

Definition 4.3. A connection V is called compatible with a mapbc-
structure (F, G, H, g), or is a (F, G, H, g)-connection on M, if it satisfies

(4.20) VF =VG=VH =Vg=0.
For a (F,G, H, g1)-connection V on M we have also
VEy, =Vyo =Vgs=Vw, =Viyy, =0,

(4.21) oo a
Voo,=Vvy, =V, =0, a=1,2.
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Using (2.2), we obtain for a mapbc-structure (F, G, H, g1), g, © YF =
Yoy, etc. Xg, ©XF = XF©Xg:, etc and so for the connections compatible
with such a structure one obtains

Theorem 4.6. The set Cramg, (M) of connections on M, compatible
with the mapbe-structure (F,G, H, g1) is given by

(4.22) V =4r 0 g 01, (V°) + XF © XG © X1 (7),

with fized V° € C(M) and arbitrary T € Di(M).
In particular, taking here 7 = 0 and VY = V9 or V° = V92, ie. the
Levi-Civita connections of the metrics g; and g2, we obtain

Theorem 4.7. The connections D* = g o g(VI*),a = 1,2, as-
sociated to Levi-Civita connections of g, are compatible with the mapbc-
structure (F,G, H, g1).

5. Integrability for the apbc-structure (F,G, H).
Considering the Nijenhus tensor for @1, 2, (p1,¢2), F, G, H and taking
Xq € Vo, = 1,2 we obtain

Ny, (X1, Y1) = [p1 X1, o1 V1] + 97 [ X1, Yi] — 1[p1 X1, V1] — 1 X1, 1 Y4],
No, (X1, Y2) = ¢1(p1[X1, Yo — [p1.X1, Y2)),

Ny, (X2,Y2) = ¢i[Xa, Yo] = —F1[Xa, V2],

N, (X1, Y1) = 93[X1, V1] = —B[X1, Y1),

N,y (X1,Y2) = @a(p2[ X1, Ya] — [ X1, p2Y2]),

Ny, (X2,Y2) = [paXa, p2Ya] + 03[ X2, Ya] — alpaXa, Vo] — 02X, p2Ya],
Noroo (X1, Y1) = —pa([p1 X1, Y1] + [X1, 1 Y1]),

Ny (X2, Y2) = —p1([p2X2, Yo + [X2, p2Y2)]),

Ny, (X1, Y2) = [p1X1, p2Ya] — 01 X1, 02Ya] — o1 X1, Yal.
Np(X1,Y1) =4F[X1,Y1], Np(X1,Y2) =0, Np(Xs,Ys2) =4F[Xs,Ys].
Ne(Xa,Ya) = (N, + Npy + Nopyo,)(Xa, Yo ), a = 1,2,

NG (X1,Y2) = (N = Npygp 0 01 X 02)(X1, Y2).

Ny (Xa,Ys) = (Nsm + Ny, — NQOWQ)(XQ,YQ), a=1,2,

Nu(X1,Y2) = =(Npypy + Noigr © 01 X 2)(X1, Y2).



11 ALMOST PRODUCT BICOMPLEX STRUCTURES ON MANIFOLDS 109

From these formulas it results:

Theorem 5.1. 1. The distribution V; is involutive iff one of the fol-
lowing conditions is satisfied;
(5.2)

Np(X1,Y1) =0; F3[X1,Y1] =0; Npa(X1,Y1) =0; ¢2[Xy,Y1] = 0.

2. The distribution V5 is involutive iff one of the following conditions is
satisfied:
(5.3)

Np(Xa,Ys) = 0; Fi[Xa, Ya] = 0; Np1(X2,Y2) =0; ¢1[Xa, Ya| = 0.

3. Both Vi and Vs are involutive iff one of the following conditions is

satisfied
5.4 Np =0; F[X,Y1] = Fi[X2,Ys] =0;
' Npa(X1,Y1) = Np1(Xa, Y2) = 0; 02[X1, V1] = ¢1[X2, Ya] = 0.

4. The ac-structure G is integrable iff Ng = 0 or
(N1 + Nz + No1p2)(Xa, Ya) = 0,a = 1,2,
(Nerps = Npiipy 0 1 X 2)(X1,Y2) = 0.
5. The ac-structure H is integrable iff Ny = 0 or
(Ng, + N2 = Nyyo)(Xa,Ya) = 0,00 = 1.2,
(Np1p2 + Ny, 0 01 X p2) (X7, Y2) = 0.
6. Both G and H are integrable iff Ng¢ = Ng =0 or

(5.5)

(5.6)

(5~7) (N% + NLpz)(XmYa) =0,a=1,2, N<,01<,02 =0.

7. If Np = 0, then Ny, (Xa,Y) = Nyy(X1,Y1) = 0, Ny, (X, Ya) =
0, =1,2 and in this hypothesis one has.

7. a) G is integrable iff N, (X,,Y,) =0,a=1,2,
(Nwlsoz - NLPNPQ °op1 X 902)(Xla}/é) =0.

7. b) H is integrable iff Nyp, (X4, Ys) =0, = 1,2,
(Npygo + Ny 0 01 X 02)(X1,Y2) = 0.

7. ¢) Both G and H are integrable iff

NW&(XOMYQ) = 0,0Z = 1727 N(plgag(XhYZ) =0

5.8
(5:8) or Ny, (Xa,Ya) =0, Ny, (X1,Y2)=0,a0=1,2.
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Definition 5.1. An almost CR-structure (D, J) on a manifold M is a
CR-structure [1] if for any X,Y € D one has

(5.9) a) [JX,Y]+[X,JY] € D,
b[JX,JY] - [X,Y] - J(JX,Y]+ [X,JY]) =0.
One remarks that a) is equivalent with
c) [JX,JY]—[X,Y] € D.

From here and from 5.1 it results

Theorem 5.2. 1. The almost CR-structure (V1,¢}) is a CR-structure
if
(5.10) Ny (X1, Y1) = (N1 + Npo) (X1, Y1) = 0.
2. The almost CR-structure (Va, ¢h) is a CR-structure iff
(5.11) Nipypo (X2, Y2) = (N1 + Nip2) (X2, Y2) = 0.
3. Vi is involutive and (V1,¢}) is a CR-structure iff
(5.12) Nea(X1, Y1) =0, Nl (X1,Y1) = 0.
4. Vi is involutive and (Va, ¢h) is a CR-structure iff
(5.13) Np1(X2,Y2) =0, Ngh(Xs,Ys) =0.
5. Both Vi and Va are involutive and (Vi, ¢}), (Va, ¢5) are CR-structures
uff
(5.14) Ng =0, Ny (XoYa)=0,a=1,2.

Definition 5.2. An apbc-structure (F, G, H) is called integrable if there
exists an atlas on M so that the associated natural bases are adapted bases
for this structure.

Theorema 5.3. An apbc-structure (F, G, H) is integrable iff one of the
following conditions holds

(5.15)
Nwwz(XhYZ) =0; Ny, = Ny, =0.
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Proof. If the apbe-structure (F, G, H) is integrable, then there exists
an atlas on M so that in the associated natural bases, the tensor fields
F,G,H, p1,p2, ¢, ¢, are given by (2.8) and hence all the conditions 5.15
are satisfied.

Conversely, if Np = Ng = Ny = 0, then from Np = 0, it results (see
[11]), that the distributions Vi and V4 are involutive and so there exists an
atlas on M so that the leaves of Vj are given locally by % = const,a =
1,2,...,2ny and 2°, with ¢ = 1,2,...,2n, are the coordinates on them.
The leaves of V5 are given by z* = const and z® are the local coordinates
on them. Hence in the natural bases associated to this atlas, F' is given by
(2.8). Then from the integrability of G and H, [8], it follows Ng(X1,Y1) =
0, Ny (X3,Y2) = 0, which give us Ny = N =0, i.e. the ac-structures ¥
and ¢, on the leaves of Vi and Vs respectively, are integrable. Therefore
we can take a new atlas on M with the new coordinates of the form sP =
sP(x%),tP = tP(2%),p = 1,2,...,n1,i = 1,2,...,2n; on the leaves of V; and
u® = u*(z?),v* = v*(x%),a = 1,2...,n2,a = 1,2,...,2n9 on the leaves
of Vi, so that in these coordinates ¢} and ¢, and hence F,G, H,p1,po
will be given by (2.8). As from the conditions 5.152 or 5.153 it follows
Np = Ng = N = 0, the theorem is proved.

Theorem 5.4. The apbe-structure (F,G, H) is integrable iff there exists
on M a symmetric FGH -connection.

Proof. If the apbe-structure (F, G, H) is integrable, from the integra-

bility of F' it follows (see [11]), that exists a symmetric F-connection V" on
M. Then, considering the connection

(5.16) VX:%(V(}(—GOV}OG),

i.e. the conjugate of V¥ with respect to G, we obtain VF = VG = VH = 0.
Hence V is a (F, G, H)-connection. For the torsion of V we get

(5.17) T(X,Y) = S[(V4G)(GY) — (VG)(EX)]

But V being a G-connection, from [8], we have for Ng

(5.18) Ng(X,Y) = T(X,Y)+G(T(GX,Y)+G(T(X,GY))-T(GX,GY),
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and substituting T from 5.17, we obtain finally,
(5.19) Na(X,Y)=2T(X,Y).

Hence, G being integrable, one has Ng = 0 and so T = 0, i.e. V is a
symmetric F, G, H-connection.

Conversely, if there exists on M a symmetric (F, G, H)-connection V,
then from the expressions 5.18, for Ng and the similar for Ny and Ng, it
follows Np = Ng = Ny = 0, i.e. the apbc-structure (F, G, H) is integrable.
From the previous Theorem, it results.

Theorem 5.5. For a Riemannian mapc-structure (F,G,H,g1) on M,
with the apbc-structure (F, G, H) integrable, one obtains;

1. (F,g1) and (F,g2) are respectively Riemannian and pseudo- Rieman-
nian locally product structures.

2. (Gyq1),(H,q1) and (G, g2),(H,g2) are respectively Hermitian and
indefinite Hermitian structures.

3. (©1,7)) and (5, v5) are Hermitian structures on the leaves of the
distributions V1 and Vi respectively.

6. Integrability for the almost symplectic structures w; and
wy. For the exterior differential of the as-structures w; and ws, taking
Xo, Yo, Zy € Vo, = 1,2, we obtain

dwi(X1,Y1,21) = di1 (X1, Y1, Z1),

3dw1 (X1, Y1, Z2) = (Lz,91)(X1, Y1) — ¥2(Z2, [ X3, V1)),
3dwi (X1, Ya, Z2) = (Lx,2)(Ya, Z2) + ¢1(X1, [Ya, Z2]),
dwi(Xo, Yo, Zs) = dipo(Xa, Ya, Z3).

dwe(X1,Y1,21) = di1 (X1, Y1, Z1),

3dws (X1, Y1, Z2) = (Lz,91)(X1, Y1) + p2(Z2, [X1, Y1])
3dwa(X1, Yz, Za) = —(Lx,v2)(Ya, Z2) + 11 (X1, [Ya, Z2)),
dwo(Xo, Yo, Zs) = —dipa(Xa,Ya, Z3).

From here it results

Theorem 6.1. 1. The as-structure wy is integrable iff
dwl(XbYla Zl) — 07 (£Z2¢1)(X17Y1) = ¢2(Z27 [X17 }/1])7

02 (Lx,12) (Y2, Z2) = —1p1(X1, [Ya, Z2]), dipo( X2, Ya, Z2) = 0.
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2. The as-structure wo is integrable iff

d7/11(X1,Y1,Z1) = 07 EZQZZ)l(le}/l) = —¢2(ZZ> [Xl,Yi]),

6.3
(63) Lx,2(Ya, Zo) = 1(X1, [Yo, Z2]), dipo(Xa,Ya, Z2) = 0.

3. Both w1 and wo are integrable iff

Np =0, dpo(Xa,Ya,Zo) =0, =1,2,

(6.4)
L7,01(X1,Y1) = Lx,92(Ya, Z3) = 0.

It results from here

Theorem 6.2. If for a Riemannian mapbc-structure (F,G, H,g1), the
associated 2-forms w1 and wo are integrable, then:

1. (F,q1) and (F, g2) are respectively Riemannian and pseudo- Rieman-
nian locally product structures.

2. (Gyg1),(H,q1) and (G, g2), (H, g2) are respectively almost Kdhler and
indefinite almost Kahler structures.

3. (¢, 71) and (ph, %) are almost Kdhler structures on the leaves of V4
and Vo respectively.

4. FEach vector field Zy € Vo (resp. X1 € V1) generates a 1-parameter
group of symplectomorphisms between the leaves of Vi (resp. Va).

In particular, from Theorem 5.2 and 6.2 and from [8,I1,p.148] it follows

Theorem 6.3 If for a Riemannian mapbe-structure (F,G, H,g1), on
M, the structures almost complex G, H and almost symplectic wi,ws are
integrable then:

1. (F,g1) and (F, g2) are respectively Riemannian and pseudo- Rieman-
nian locally decompozable structures.

2. (G,g1),(H,q1) and (G, g2), (H, g2) are respectively Kahler and indef-
iite Kahler structures.

3. (¢, 71) and (¥, vy) are Kdhler structures on the leaves of Vi and V3
respectively.

7. Example. Let N be a manifold, M = TN the total space of the
tangent bundle 7 : TN — N and VI'N = Ker T'm the vertical subbundle
of TN. Denote by (%), (z*,4*) the local coordinates on N and TN and by
(i), (9i,0i) the correspondlng local bases, where 0; = 8{}3”8, = aT/’Z =
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1,2,...,n. Also we denote by (d), (d*,d"), where d' = dz',d" = dy', the
dual local bases on N and T'N. Setting for each 1-form o € D;(N), given
locally by a(z) = ai(x)d’,ya(z) = a;(z)y’, where z = (z,y) € T.N, we
obtain a class of functions on T'N with the property that every vector field
A € DY(TN) is uniquely determined by its values on these functions. The
mappings v may be extended to tensor fields S € D}(N) by putting

(7.1) vS(ya) =v(ao S), Va € Di(N).

Locally, if S(x) = S;(x)al ® d’, then vS(z) = S;(x)yjai, hence ~S is
a vertical vector field on TIN. Let then V be a linear connection and X a
vector field on N. Setting

(7.2) Xh(ya) = 4(Vxa), X (ya) = a(X) o, VYa € Di(N),

we obtain two vector fields on T'N called respectively the horizontal and
the vertical lifts of X. We have the following useful relations.

fr=fr=fom (fX) = f1 X" (fX)" = f'X"

i (X", Yh] = [X,Y]" = yRxy, [X" V7] = (VxY)",[X?,V?] =0,

where f € C®°(N), X,Y € D}(N) and R is the curvature tensor of V.
Setting

(7.4) F(Xh) = X" F(X')=-X", VX € D}(N),

we obtain an ap-structure F' on T'N, whose +1 and —1 eigendistributions
(subbundles) are respectively the horizontal distribution V3 = HT'N associ-
ated to connection V and the vertical distribution V5 = VT'N of the tangent
bundle TN. For f € Di(N) and g € DJ(N), we define the horizontal (h)
and vertical (v) lifts by
(7.5)
FHEER) = FOOR, PR = 0, (XM =0, [P(XY) = F(X)";
g" (XY = g(X,Y)", " (XP V) = g"(XV, V) = g"(X°, V) =0,
g (X" Yh) = " (X" YY) = g"(X", Yh) 0,9"(X", YY) = g(X,Y)".

Let now (f,g) be an almost Hermitian structure on N and w = go I x f
the associated 2-form. Setting

(7.6) F=I"-1" G=f"+f", H=f"—f"
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we obtain the ap-structure F' given by (7.4) and two ac-structures G' and
H, which satisfy the conditions (2.1), i.e. determine an apbc-structure on
TN. Putting then

(7.7) g=g"+9"p=9"—¢" w1 =" +w w =" —w’,

we get that g, go determine Riemannian and pseudo-Riemannian structures
respectively and wi,ws as-structures on T'N, which satisfy the conditions
(3.1) and (3.2). Hence, we have

Theorem 7.1 Given an almost Hermitian structure (f,g) with the as-
sociated 2-form w and a linear connection V on N, one obtains by the
formulas (7.6) and (7.7) a Riemannian mapbc-structure (F,G, H, g1), with
the associated metric go and two as-structures (wi,w2) on the manifold
TN. The pair of the associated supplementary cc-structures is given by
01 = f o = fY, the pairs of induced almost Hermitian structures on the
distributions Vi = HTM and Vo = VTM by (f* ¢")/V1,(f°,9°)/Va and
the supplementary almost CR-structures by (Vi, f*/V1), (Va, f°/V5).

For a connection V on N we define the diagonal lift D, (see [6]), by
78) DY = (VYY) DYV = (VxY)?,
' Dx»Y" = DxoY? = 0,¥X,Y € DY(N).

The nonvanishing components of the torsion and the curvature tensor fields

of D, are given by
79) T(X" Yh) =T(X,Y)" + vRxy,
. 'RthhZh = (nyZ)h,Rthth = (RxyZ2)",

where T" and R are the torsion and curvature tensors of V. After that, for
the covariant derivatives with respect to D, of F, G, H, g, and wy,a = 1,2
we obtain

DF = 0; Dx1G = (Vx )"+ (Vxf)", Dx+G = 0;
DxnH = (Vxf)" = (Vx[)", DxvH = 0;
Dxngr = (Vxg)" + (Vxg)", Dxvgr = 0;
Dxnga = (Vxg)" = (Vxg)’, Dxvga = 0;

(Vxw)" + (Vxw)", Dxvwi = 0;
(Vxw)h — (Vxw)?, Dxvws = 0.

(7.10)

DXhW1

DXhUJQ
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Hence, DF = 0 always, DG = DH =0, it Vf =0,Dg, = 0,a = 1,2 iff
Vg=0and Dw, =0,a = 1,2 iff Vw = 0. So we have

Theorem 7.2. The diagonal lift D on TN, for a connection V on N,
is a (F,G, H, g1)-connection iff V is a (f, g)-connection, i.e. iff V is given
by

(7.11) V=1yo ¢g(v0) + Xr°Xg(7),

with V° € C(N) fired and 7 € D3(N) arbitrary.
For the Nijenhuis tensors of F,G and H one obtains

(7.12)
Np(XP, Y") = 4yRxy, Np(X", YY) = 0, Np(X?,Y"V) = 0;
Ne(X",Y") = Ny(X,Y)" +9[Rxy — Ryxypy + f o (Ryxy + Rxyv)l,
Ne(X" YY) =[(Vixf—foVx[)(Y)]", Na(X",Y") = 0;
N (X" Y") = Ne(X,Y)" +4[Rxy — Rpxgy — f o (Ryxy + Rxyy)),
Ny (X" Y?) = =[(Vyxf+ foVxf)(Y)]’, Nu(X",Y") =0.

From here it results.

Theorem 7.3. 1. The ap-structure F' is integrable iff R = 0;
2. The ac-structure G is integrable iff

Ny =0,Vixf—foVxf=0,

(7.13)
Rxy — Ryxyy + fo(Ryxy + Rxypy) = 0;
3. The ac-structure H is integrable iff

(7.14) Ny =0,Vixf+foVxf=0,
Rxy — Ryxypy — fo(Ryxy + Rxyy) = 0;
4. Both the ac-structure G' and H are integrable iff
(7.15) Ny =0,Vf=0,Rxy — Rexsy =0;
5. The apbc-structure (F, G, H) is integrable iff

(7.16) Nf=0,Vf=0,R=0.
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For the exterior derivative of the 2-forms wy and w9 we obtain

dwy (X" Y ZM) = dw(X,Y, Z)", 3dwy (X", Y, ZY) = —y(izw o Rxy),
3dw (XM, Y'Y, Z2%) = (Vxw(Y, 2)), dw (X?, Y, Z°) = 0;
dwo( X" Y ZM) = dw(X,Y, Z)", 3dwo (X", Y, Z7) = y(igzw o Rxy),
3dwy (XM, Y'Y, Z%) = —(Vxw)(Y, Z)?,dws(X°, Y, Z?) = 0.

So, one has

Theorem 7.4. The 2-forms wa,a = 1,2 are simultaneous integrable,
namely iff

(7.18) dw =0,Vw=0,R = 0.
From (7.16) and (7.18) one obtains.

Theorem 7.5. The apbe-structure (F, G, H) and the as-structures wy, wo
are simultaneous integrable iff

(7.19) Ny=dw=0,Vf=Vw=0,R=0,

with other words iff (f,g) is a Kahler structure and V a(f, g)-connection
with vanishing curvature on N.

In particular, these conditions are satisfied if (f,g) is a Kahler structure
with vanishing curvature on N and V the Levi-Civita connection of g.
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