ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII "AL.I. CUZA" IAȘI Tomul LI, s.I, Matematică, 2005, f.1

ALMOST PRODUCT BICOMPLEX STRUCTURES ON MANIFOLDS*

$\mathbf{B}\mathbf{Y}$

V. CRUCEANU

Abstract. We study the equivalence of an almost product bicomplex (apbc)-structure with other important structures on a manifold, metrics and linear connections compatible with such a structure and the integrability of the apbc-structures. Finally, we give an example of an apbc-structure on the tangent bundle of an almost Hermitian manifold.

Mathematics Subject Classification 2000: 53C55.

Key words: Almost product bicomplex structure. Associated metric and symplectic structures. Compatible connections. Integrability.

1. Introduction. The almost product bicomplex (apbc)-structures, together with other important structures on a manifold, were considered by LIBERMANN [9], HSU [7], CRUCEANU [3], MAKSYM and ZMUREK [10] and others. But a more complete and consistent analyze of these structures was made by Bonome, Castro, Garcia-Rio, Hervella and Matsushita in the joint paper [2].

In this work we study the equivalence of an apbc-structure with other important structures on a manifold, metrics and linear connections compatible with such a structure and the integrability of the metric apbc-structures. An example of a Riemannian apbc-structure on the total space of the tangent bundle to an almost Hermitian manifold is also analyzed.

2. Almost product bicomplex structures. Let M be a paracompact and connected C^{∞} -manifold, $\mathcal{F}(M)$ the ring of real functions, $\mathcal{D}_{s}^{r}(M)$

^{*}This paper was partially supported by CNCSIS-Romania

100 V. CRUCEANU	2
-----------------	---

the $\mathcal{F}(M)$ -module of (r, s)-tensor fields and $\mathcal{D}(M)$ the $\mathcal{F}(M)$ -tensor algebra on M.

Definition 2.1. An almost product bicomplex (apbc)-structure on the manifold M, is a triple (F, G, H) of (1, 1)-tensor fields which satisfies the conditions

(2.1)
$$-F^{2} = G^{2} = H^{2} = F \circ G \circ H = -I, F \neq \pm I.$$

It follows that F is an almost product (ap)-structure and G, H are almost complex (ac)-structures on M, which satisfy the relations

$$(2.2) \ F \circ G = G \circ F = H, G \circ H = H \circ G = -F, H \circ F = F \circ H = G, F \neq \pm I.$$

Denote by $V_1 = F^+$ and $V_2 = F^-$, the eigendistributions (or subbundles of TM), corresponding to eigenvalues ± 1 and by F_1 and F_2 the associated projectors to F, i.e.

(2.3)
$$F_1 = \frac{I+F}{2}, \quad F_2 = \frac{I-F}{2}$$

Setting then

(2.4)
$$\varphi_1 = G \circ F_1, \quad \varphi_2 = G \circ F_2$$

one obtains

(2.5)
$$\varphi_1 \circ \varphi_2 = \varphi_2 \circ \varphi_1 = 0, \ \varphi_1^2 = -F_1, \ \varphi_2^2 = -F_2, \\ \varphi_1^2 + \varphi_2^2 = -I, \ \varphi_1^3 + \varphi_1 = \varphi_2^3 + \varphi_2 = 0.$$

Definition 2.2. An almost cocomplex (acc)-structure on M is a (1, 1)tensor field φ satisfying $\varphi^3 + \varphi = 0$. Two (acc)-structures φ_1 and φ_2 are supplementary if $\varphi_1^2 + \varphi_2^2 = -I$.

From (2.4) and (2.5) we obtain

(2.6)
$$F = \varphi_2^2 - \varphi_1^2, \quad G = \varphi_1 + \varphi_2, \quad H = \varphi_1 - \varphi_2.$$

Then, from (2.2) it follows that G and H preserve the distributions V_1 and V_2 and so, putting $\varphi'_1 = G/V_1, \varphi'_2 = G/V_2$, one has ${\varphi'_1}^2 = -I_1, {\varphi'_2}^2 = -I_2$, i.e. φ'_1 and φ'_2 are complex structures on V_1 and V_2 respectively. **Definition 2.3.** An almost CR-structure [1] on a manifold M is a pair (D, J), where D is a distribution on M and J an almost complex structure on D. Two almost CR-structures (D_1, J_1) and (D_2, J_2) are supplementary if D_1 and D_2 are supplementary distributions on M.

It follows that (V_1, φ'_1) and (V_1, φ'_2) are supplementary almost CRstructures on M and from (2.4) one has

(2.7)
$$G = \varphi_1' \circ F_1 + \varphi_2' \circ F_2, \quad H = \varphi_1' \circ F_1 - \varphi_2' \circ F_2$$

From the previous considerations it results.

Theorem 2.1. An appc-structure on the manifold M may be defined by one of the following equivalent structures:

- 1) A triple formed by an ap-structure F and two ac-structures G and H which satisfy $F \circ G \circ H = -I, F \neq \pm I$.
- 2) A pair formed by an ap-structure F and an ac-structure G (or H), which commute.
- 3) Two commuting ac-structures, G and H, with $G \neq \pm H$.
- 4) Two supplementary acc-structures φ_1 and φ_2 , with $\varphi_1 \neq 0, I$.
- 5) Two supplementary almost CR-structures (V_1, φ'_1) and (V_2, φ'_2) .

 V_1 and V_2 being complex distributions, it results dim $V_1 = 2n_1$, dim $V_2 = 2n_2$ and so dim $M = 2(n_1+n_2)$. In particular, if F is an almost paracomplex (apc)-structure [5], on M, i.e. $F^2 = I$, TrF = 0, then $n_1 = n_2 = n$ and hence dim M = 4n.

Definition 2.4. An adapted basis, for an appc-structure (F, G, H) in $x \in M$, is a basis $(e_i, e_{n_1+i}, e_a, e_{n_2+a})$, with $e_i \in V_1$, $e_{n_1+i} = G(e_i), e_a \in V_2, e_{n_2+a} = G(e_a), i = 1, 2, \ldots, n_1, a = 1, 2, \ldots, n_2$.

In an adapted basis, the tensor fields F,G,H,φ_1 and φ_2 have the matrices

(2.8)
$$F = \begin{bmatrix} I_{2n_1} & 0\\ 0 & -I_{2n_2} \end{bmatrix}, G = \begin{bmatrix} \varphi_1' & 0\\ 0 & \varphi_2' \end{bmatrix}, H = \begin{bmatrix} \varphi_1' & 0\\ 0 & -\varphi_2' \end{bmatrix},$$
$$\varphi_1 = \begin{bmatrix} \varphi_1' & 0\\ 0 & 0 \end{bmatrix}, \varphi_2 = \begin{bmatrix} 0 & 0\\ 0 & \varphi_2' \end{bmatrix}$$

(2.9)
$$\varphi'_1 = \begin{bmatrix} 0 & -I_{n_1} \\ I_{n_1} & 0 \end{bmatrix}, \quad \varphi'_2 = \begin{bmatrix} 0 & -I_{n_2} \\ I_{n_2} & 0 \end{bmatrix}.$$

The change of the adapted bases are given by matrices of the form

(2.10)
$$T = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}, \text{ with } A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, B = \begin{bmatrix} p & -q \\ q & p \end{bmatrix}$$

and $a + ib \in GL(n_1, \mathbb{C}), p + iq \in GL(n_2, \mathbb{C}).$ It follows from here.

Theorem 2.2. The structural group of the tangent bundle of a manifold M endowed with an appc-structure is reducible to the real representation $\Sigma(2n_1, \mathbb{R}) \times \Sigma(2n_2, \mathbb{R})$ of the direct product $GL(n_1, \mathbb{C}) \times GL(n_2, \mathbb{C})$.

3. Metric and symplectic structures compatible with an apbcstructure. Let h be a metric structure on M and

(3.1)
$$g_1 = h \circ (I \times I + F \times F + G \times G + H \times H), \quad g_2 = g_1 \circ I \times F,$$
$$\omega_1 = g_1 \circ I \times G, \quad \omega_2 = g_1 \circ I \times H.$$

One obtains

(3.2)
$$g_{\alpha} \circ F \times F = g_{\alpha} \circ G \times G = g_{\alpha} \circ H \times H = g_{\alpha}, \\ \omega_{\alpha} \circ F \times F = \omega_{\alpha} \circ G \times G = \omega_{\alpha} \circ H \times H = \omega_{\alpha}, \quad \alpha = 1, 2,$$

i.e. g_{α} are metric and ω_{α} are almost symplectic structures on M, compatible with the appc-structure (F, G, H).

In particular, if h is a Riemannian structure then g_1 is also Riemannian and g_2 is pseudo-Riemannian structure of signature (n_1, n_2) .

Denoting then

(3.3)
$$\gamma_1' = g_1/V_1 \times V_1, \ \gamma_2' = g_2/V_2 \times V_2,$$

we obtain two metrics γ'_1 on V_1 and γ'_2 on V_2 , which are Riemannian in the same time with g_1 and satisfy

(3.4)
$$\gamma'_{\alpha} \circ \varphi'_{\alpha} \times \varphi'_{\alpha} = \gamma'_{\alpha}, \ \alpha = 1, 2.$$

Considering

5

(3.5)
$$\psi_1 = \omega_1 \circ F_1 \times F_1, \quad \psi_2 = \omega_2 \circ F_2 \times F_2,$$

we obtain two degenerate 2-forms on M and we have

(3.6)
$$\omega_1 = \psi_1 + \psi_2, \ \omega_2 = \psi_1 - \psi_2.$$

After that, setting:

(3.7)
$$\psi'_1 = \omega_1 / V_1 \times V_1, \quad \psi'_2 = \omega_2 / V_2 \times V_2,$$

one obtains two symplectic forms on V_1 and V_2 , which satisfy

(3.8)
$$\psi'_{\alpha} \circ \varphi'_{\alpha} \times \varphi'_{\alpha} = \psi'_{\alpha}, \quad \alpha = 1, 2.$$

Definition 3.1. We call the set (F, G, H, g_1) , which satisfy (2.1) and (3.1), a metric almost product bicomplex (mapbc)-structure on M and g_2, ω_1, ω_2 the associated metric and almost symplectic structures.

Therefore, to a Riemannian mapbc-structure (F, G, H, g_1) we will associate the follows structures: the Riemannian ap-structure (F, g_1) with the associated pseudo Riemannian structure g_2 , the pseudo-Riemannian apstructure (F, g_2) with the associated Riemannian structure g_1 , the almost Hermitian structures (G, g_1) and (H, g_1) with the associated almost symplectic structures ω_1 and ω_2 respectively, and the indefinit almost Hermitian structures (G, g_2) and (H, g_2) with the associated almost symplectic structures ω_2 and ω_1 respectively. We will have also, on the distributions V_{α} , the Hermitian structures $(\varphi'_{\alpha}, \gamma'_{\alpha})$ with the associated symplectic structures $\psi'_{\alpha}, \alpha = 1, 2$.

Definition 3.2. An adapted basis for the Riemannian mapbc-structure (F, G, H, g_1) is an adapted basis for the abpc-structure (F, G, H), which is orthonormal with respect to g_1 .

In such a basis the matrices of g_1, g_2, ω_1 and ω_2 coincide with the matrices of I, F, G, H respectively. From here and the Theorem 2.2, it follows

Theorem 3.1. The structural group of the tangent bundle for a manifold M endowed with a Riemannian mapbc-structure is reducible to the real representation $SO(2n_1) \times SO(2n_2)$ of the direct product $\mathcal{U}(n_1, \mathbb{C}) \times \mathcal{U}(n_2, \mathbb{C})$.

4. Connections compatible with an apbc-structure. For to give a more geometrical character to our considerations, we will use from the beginning the following important remark. If ∇^0 is a fixed connection on M, then for each connection ∇ there exists a single tensor field $\tau \in \mathcal{D}_2^1(M)$ so that $\nabla = \nabla^0 + \tau$. With other words, the set C(M) of linear connections on M is an $\mathcal{F}(M)$ -affine module [4], associated to the $\mathcal{F}(M)$ -linear module $\mathcal{D}_2^1(M)$.

Considering now an ap-structure F on M and setting for $\nabla \in C(M), \tau \in \mathcal{D}_2^1(M), X \in \mathcal{D}^1(M),$

(4.1)
$$\psi_F(\nabla)_X = \frac{1}{2}(\nabla_X + F \circ \nabla_X \circ F), \chi_F(\tau)_X = \frac{1}{2}(\tau_X + F \circ \tau_X \circ F),$$

we get that $\psi_F(\nabla) \in \mathcal{C}(M), \chi_F(\tau) \in \mathcal{D}_2^1(M)$ and

(4.2)
$$\psi_F^2 = \psi_F, \ \chi_F^2 = \chi_F, \ \psi_F(\nabla + \tau) = \psi_F(\nabla) + \chi_F(\tau).$$

It follows from here that ψ_F is the $\mathcal{F}(M)$ -affine projector on C(M) associated to the $\mathcal{F}(M)$ -linear projector χ_F on $\mathcal{D}_2^1(M)$.

Definition 4.1. A linear connection ∇ on M is called compatible with the ap-structure F, or is a F-connection, if $\nabla F = 0$.

From (4.1) and (4.2) it follows that $\nabla F = 0$ is equivalent with $\psi_F(\nabla) = \nabla$ and so with $C_F(M) = Im\psi_F$. Hence we have

Theorem 4.1. The set $C_F(M)$ of connection on M, compatible with the ap-structure F, is the affine submodule of C(M) which coincides with the image of the affine projector ψ_F .

Considering on C(M) the conjugation with respect to F, i.e. the automorphism $\kappa_F : C(M) \to C(M)$ given by

(4.3)
$$\kappa_F(\nabla)_X = F \circ \nabla_X \circ F, \quad \forall \nabla \in C(M), X \in \mathcal{D}^1(M),$$

we obtain

104

(4.4)
$$\psi_F(\nabla) = \frac{1}{2}(\nabla + \kappa_F(\nabla)).$$

Hence κ_F is the affine symmetry of the affine module C(M), with respect to affine submodule $C_F(M)$, made parallel with the linear submodule Ker χ_F and ψ_F is the mean connection of ∇ and its conjugate $\chi_F(\nabla)$, with

6

respect to F. We will call $\psi_F(\nabla)$ the *F*-connection associated to ∇ , with respect to ap-structure F. Using the projectors F_1 and F_2 , the *F*-connection $\psi_F(\nabla)$ may be also given by

(4.5)
$$\psi_F(\nabla)_X = \sum_{\alpha=1}^2 F_\alpha \circ \nabla_X \circ F_\alpha, \ X \in \mathcal{D}^1(M).$$

But being a *F*-connection, $\psi_F(\nabla)$ preserves the subbundles V_1, V_2 and induces on them the connections

(4.6)
$$\overset{\alpha}{\nabla}_X Y_{\alpha} = F_{\alpha} \circ \nabla_X Y_{\alpha}, \quad X \in \mathcal{D}^1(M), Y_{\alpha} \in V_{\alpha}, \alpha = 1, 2.$$

and so we have

7

(4.7)
$$\psi_F(\nabla)_X = \sum_{\alpha=1}^2 \stackrel{\alpha}{\nabla}_X \circ F_{\alpha}.$$

Let ∇^0 be a fixed connection on M. Since $C_F(M) = Im\psi_F$ then, for each connection $\nabla \in C_F(M)$, there exists $\nabla' \in C(M)$ so that $\nabla = \psi_F(\nabla')$. After that, there exists $\tau \in \mathcal{D}_2^1(M)$ so that $\nabla' = \nabla^0 + \tau$. Therefore, $\nabla = \psi_F(\nabla^0 + \tau)$ and from (4.2) it results

Theorem 4.2. The set $C_F(M)$ of connections ∇ on M compatible with the ap-structure F is given by

(4.8)
$$\nabla = \psi_F(\nabla^0) + \chi_F(\tau),$$

where ∇ is a fixed connection and τ an arbitrary (1.2)-tensor field on M.

With other words, $C_F(M)$ is the affine submodule of C(M) passing through the *F*-connection $\psi_F(\nabla^0)$ and having the direction given by the linear submodule $Im\chi_F$ of $\mathcal{D}_2^1(M)$. Similarly considering an ac-structure *G* on *M* and setting for $\nabla \in C(M), \tau \in \mathcal{D}_2^1(M)$ and $X \in \mathcal{D}^1(M)$,

(4.9)
$$\psi_G(\nabla)_X = \frac{1}{2}(\nabla_X - G \circ \nabla_X \circ G), \quad \chi_G(\tau)_X = \frac{1}{2}(\tau_X - G \circ \tau_X \circ G),$$

we obtain

(4.10)
$$\psi_G^2 = \psi_G, \ \chi_G^2 = \chi_G, \ \psi_G(\nabla + \tau) = \psi_G(\nabla) + \chi_G(\tau).$$

8

After that, for the set of G-connections and the conjunction with respect to G, we have $C_G(M) = Im\psi_G$, $\kappa_G(\nabla)_X = -G \circ \nabla_X \circ G$ and so,

(4.11)
$$\psi_G(\nabla) = \frac{1}{2}(\nabla + \kappa_G(\nabla)).$$

Finally, the affine submodule $C_G(M)$ of G-connections is given by

(4.12)
$$\nabla = \psi_G(\nabla^0) + \chi_G(\tau),$$

with fixed $\nabla^0 \in C(M)$ and arbitrary $\tau \in \mathcal{D}_2^1(M)$.

Definition 4.2. A connection ∇ is called compatible with the appcstructure (F, G, H) or is a (F, G, H)-connection on M, if it satisfies

(4.13)
$$\nabla F = \nabla G = \nabla H = 0.$$

By an easy calculation we obtain

Theorem 4.3. A connection ∇ on M is a (F, G, H)-connection iff it satisfies one of the following conditions:

- 1. ∇ is a (F,G) or a (G,H) or a (H,F)-connection,
- 2. ∇ is a (φ_1, φ_2) -connection,
- 3. There exist a φ'_1 -connection $\stackrel{1}{\nabla}$ on V_1 and a φ'_2 -connection $\stackrel{2}{\nabla}$ on V_2 so that

(4.14)
$$\nabla_X = \stackrel{1}{\nabla}_X \circ F_1 + \stackrel{2}{\nabla}_X \circ F_2, \quad \forall X \in \mathcal{D}^1(M).$$

From the commutativity of the composition for F, G, H it follows the commutativity for the composition of ψ_F, ψ_G, ψ_H ; of χ_F, χ_G, χ_H and of $\kappa_F, \kappa_G, \kappa_H$. After that ψ_F and ψ_G being affine projectors associated to linear projectors χ_F and χ_G it results that $\psi_F \circ \psi_G$ is the affine projector associated to linear projector $\chi_F \circ \chi_G$, i.e.

(4.15)
$$\psi_F \circ \psi_G(\nabla + \tau) = \psi_F \circ \psi_G(\nabla) + \chi_F \circ \chi_G(\tau)$$

From here one obtains

Theorem 4.4. The set $C_{FGH}(M)$ of connections compatible with the appc-structure (F, G, H) is given by

(4.16)
$$\nabla = \psi_F \circ \psi_G(\nabla^0) + \chi_F \circ \chi_G(\tau),$$

with $\nabla^0 \in C(M)$ fixed and $\tau \in \mathcal{D}_2^1(M)$ arbitrary.

9

Taking here $\tau = 0$, it follows that an appc-structure (F, G, H) assign to each connection $\nabla^0 \in C(M)$ a (F, G, H)-connection $\nabla = \psi_F \circ \psi_G(\nabla^0)$ which may be written also in the form

(4.17)
$$\nabla = \frac{1}{4} (\nabla^0 + \kappa_F (\nabla^0) + \kappa_G (\nabla^0) + \kappa_H (\nabla^0)),$$

i.e. ∇ is the mean connection of ∇^0 and its conjugate connections with respect to F, G and H.

Now let g be a metric on M, considered as a mapping from $\mathcal{D}^1(M)$ to $\mathcal{D}_1(M)$ which assigns to a vector field X the 1-form α given by $\alpha(Y) = g(X, Y)$, for any vector field Y. Setting then, for $\nabla \in C(M)$ and $\tau \in \mathcal{D}_2^1(M)$,

(4.18)
$$\psi_g(\nabla)_X = \frac{1}{2}(\nabla_X + g^{-1} \circ \nabla_X \circ g), \ \chi_g(\tau)_X = \frac{1}{2}(\tau_X + g^{-1} \circ \tau_X \circ g),$$

we obtain as for an ap-structure F, the following

Theorem 4.5. The set $C_g(M)$ of connections on M compatible with a metric g (i.e. $\nabla g = 0$) are given by

(4.19)
$$\nabla = \psi_g(\nabla^0) + \chi_g(\tau),$$

with fixed $\nabla^0 \in C(M)$ and arbitrary $\tau \in \mathcal{D}_2^1(M)$.

Definition 4.3. A connection ∇ is called compatible with a mapbcstructure (F, G, H, g), or is a (F, G, H, g)-connection on M, if it satisfies

(4.20)
$$\nabla F = \nabla G = \nabla H = \nabla g = 0.$$

For a (F, G, H, g_1) -connection ∇ on M we have also

(4.21)
$$\nabla F_{\alpha} = \nabla \varphi_{\alpha} = \nabla g_2 = \nabla \omega_{\alpha} = \nabla \psi_{\alpha} = 0,$$
$$\nabla \varphi_{\alpha}' = \nabla \varphi_{\alpha}' = \nabla \varphi_{\alpha}' = 0, \quad \alpha = 1, 2.$$

108	V. CRUCEANU	10

Using (2.2), we obtain for a mapbc-structure (F, G, H, g_1) , $\psi_{g_1} \circ \psi_F = \psi_F \circ \psi_{g_1}$, etc. $\chi_{g_1} \circ \chi_F = \chi_F \circ \chi_{g_1}$, etc and so for the connections compatible with such a structure one obtains

Theorem 4.6. The set $C_{FGHg_1}(M)$ of connections on M, compatible with the mapbe-structure (F, G, H, g_1) is given by

(4.22)
$$\nabla = \psi_F \circ \psi_G \circ \psi_{g_1}(\nabla^0) + \chi_F \circ \chi_G \circ \chi_{g_1}(\tau),$$

with fixed $\nabla^0 \in C(M)$ and arbitrary $\tau \in \mathcal{D}_2^1(M)$.

In particular, taking here $\tau = 0$ and $\nabla^0 = \nabla^{g_1}$ or $\nabla^0 = \nabla^{g_2}$, i.e. the Levi-Civita connections of the metrics g_1 and g_2 , we obtain

Theorem 4.7. The connections $D^{\alpha} = \psi_F \circ \psi_G(\nabla^{g_{\alpha}}), \alpha = 1, 2, as$ sociated to Levi-Civita connections of g_{α} , are compatible with the mapbestructure (F, G, H, g_1) .

5. Integrability for the apbc-structure (F, G, H).

Considering the Nijenhus tensor for $\varphi_1, \varphi_2, (\varphi_1, \varphi_2), F, G, H$ and taking $X_{\alpha} \in V_{\alpha}, \alpha = 1, 2$ we obtain

$$\begin{split} N_{\varphi_1}(X_1,Y_1) &= [\varphi_1X_1,\varphi_1Y_1] + \varphi_1^2[X_1,Y_1] - \varphi_1[\varphi_1X_1,Y_1] - \varphi_1[X_1,\varphi_1Y_1], \\ N_{\varphi_1}(X_1,Y_2) &= \varphi_1(\varphi_1[X_1,Y_2] - [\varphi_1X_1,Y_2]), \\ N_{\varphi_1}(X_2,Y_2) &= \varphi_1^2[X_2,Y_2] = -F_1[X_2,Y_2], \\ N_{\varphi_2}(X_1,Y_1) &= \varphi_2^2[X_1,Y_1] = -F_2[X_1,Y_1], \\ N_{\varphi_2}(X_2,Y_2) &= [\varphi_2X_2,\varphi_2Y_2] + \varphi_2^2[X_2,Y_2] - \varphi_2[\varphi_2X_2,Y_2] - \varphi_2[X_2,\varphi_2Y_2], \\ N_{\varphi_1\varphi_2}(X_1,Y_1) &= -\varphi_2([\varphi_1X_1,Y_1] + [X_1,\varphi_1Y_1]), \\ N_{\varphi_1\varphi_2}(X_2,Y_2) &= [\varphi_1X_1,\varphi_2Y_2] - \varphi_1[X_1,\varphi_2Y_2] - \varphi_2[\varphi_1X_1,Y_2]. \\ N_F(X_1,Y_1) &= 4F_2[X_1,Y_1], \quad N_F(X_1,Y_2) = 0, \quad N_F(X_2,Y_2) = 4F_1[X_2,Y_2]. \\ N_G(X_\alpha,Y_\alpha) &= (N_{\varphi_1} + N_{\varphi_2} + N_{\varphi_1\varphi_2})(X_\alpha,Y_\alpha), \alpha = 1, 2, \\ N_H(X_\alpha,Y_\alpha) &= (N_{\varphi_1} + N_{\varphi_2} - N_{\varphi_1\varphi_2})(X_\alpha,Y_\alpha), \quad \alpha = 1, 2, \\ N_H(X_1,Y_2) &= -(N_{\varphi_1\varphi_2} + N_{\varphi_1\varphi_2}) \circ \varphi_1 \times \varphi_2)(X_1,Y_2). \end{split}$$

From these formulas it results:

Theorem 5.1. 1. The distribution V_1 is involutive iff one of the following conditions is satisfied;

(5.2)

$$N_F(X_1, Y_1) = 0; \quad F_2[X_1, Y_1] = 0; \quad N\varphi_2(X_1, Y_1) = 0; \quad \varphi_2[X_1, Y_1] = 0.$$

2. The distribution V_2 is involutive iff one of the following conditions is satisfied:

(5.3)

$$N_F(X_2, Y_2) = 0; \quad F_1[X_2, Y_2] = 0; \quad N\varphi_1(X_2, Y_2) = 0; \quad \varphi_1[X_2, Y_2] = 0.$$

3. Both V_1 and V_2 are involutive iff one of the following conditions is satisfied

(5.4)
$$N_F = 0; \quad F_2[X_1, Y_1] = F_1[X_2, Y_2] = 0; N\varphi_2(X_1, Y_1) = N\varphi_1(X_2, Y_2) = 0; \quad \varphi_2[X_1, Y_1] = \varphi_1[X_2, Y_2] = 0.$$

4. The ac-structure G is integrable iff $N_G = 0$ or

(5.5)
$$(N\varphi_1 + N\varphi_2 + N\varphi_1\varphi_2)(X_{\alpha}, Y_{\alpha}) = 0, \alpha = 1, 2$$
$$(N_{\varphi_1\varphi_2} - N_{\varphi_1\varphi_2} \circ \varphi_1 \times \varphi_2)(X_1, Y_2) = 0.$$

5. The ac-structure H is integrable iff $N_H = 0$ or

(5.6)
$$(N_{\varphi_1} + N_{\varphi_2} - N_{\varphi_1\varphi_2})(X_\alpha, Y_\alpha) = 0, \alpha = 1.2,$$
$$(N_{\varphi_1}\varphi_2 + N_{\varphi_1\varphi_2} \circ \varphi_1 \times \varphi_2)(X_1, Y_2) = 0.$$

6. Both G and H are integrable iff $N_G = N_H = 0$ or

(5.7)
$$(N_{\varphi_1} + N_{\varphi_2})(X_{\alpha}, Y_{\alpha}) = 0, \alpha = 1, 2, \ N_{\varphi_1 \varphi_2} = 0.$$

7. If $N_F = 0$, then $N_{\varphi_1}(X_2, Y_2) = N_{\varphi_2}(X_1, Y_1) = 0$, $N_{\varphi_1\varphi_2}(X_\alpha, Y_\alpha) = 0$, $\alpha = 1, 2$ and in this hypothesis one has.

7. a) G is integrable iff $N_{\varphi_{\alpha}}(X_{\alpha}, Y_{\alpha}) = 0, \alpha = 1, 2,$ $(N_{\varphi_{1}\varphi_{2}} - N_{\varphi_{1}\varphi_{2}} \circ \varphi_{1} \times \varphi_{2})(X_{1}, Y_{2}) = 0.$ 7. b) H is integrable iff $N\varphi_{\alpha}(X_{\alpha}, Y_{\alpha}) = 0, \alpha = 1, 2,$ $(N_{\varphi_{1}\varphi_{2}} + N_{\varphi_{1}\varphi_{2}} \circ \varphi_{1} \times \varphi_{2})(X_{1}, Y_{2}) = 0.$ 7. c) Both G and H are integrable iff

(5.8)
$$N_{\varphi_{\alpha}}(X_{\alpha}, Y_{\alpha}) = 0, \alpha = 1, 2, \quad N_{\varphi_{1}\varphi_{2}}(X_{1}, Y_{2}) = 0$$

or $N_{\varphi_{\alpha}}(X_{\alpha}, Y_{\alpha}) = 0, \quad N_{\varphi_{\alpha}}(X_{1}, Y_{2}) = 0, \alpha = 1, 2.$

Definition 5.1. An almost CR-structure (D, J) on a manifold M is a CR-structure [1] if for any $X, Y \in D$ one has

(5.9)

$$a) [JX,Y] + [X,JY] \in D,$$

 $b)[JX,JY] - [X,Y] - J([JX,Y] + [X,JY]) = 0.$

One remarks that a) is equivalent with

c)
$$[JX, JY] - [X, Y] \in D.$$

From here and from 5.1 it results

Theorem 5.2. 1. The almost CR-structure (V_1, φ'_1) is a CR-structure iff

(5.10)
$$N_{\varphi_1\varphi_2}(X_1, Y_1) = (N\varphi_1 + N\varphi_2)(X_1, Y_1) = 0.$$

2. The almost CR-structure (V_2, φ'_2) is a CR-structure iff

(5.11)
$$N_{\varphi_1\varphi_2}(X_2, Y_2) = (N\varphi_1 + N\varphi_2)(X_2, Y_2) = 0.$$

3. V_1 is involutive and (V_1, φ'_1) is a CR-structure iff

(5.12)
$$N\varphi_2(X_1, Y_1) = 0, \ N\varphi_1'(X_1, Y_1) = 0.$$

4. V_2 is involutive and (V_2, φ'_2) is a CR-structure iff

(5.13)
$$N\varphi_1(X_2, Y_2) = 0, \ N\varphi_2'(X_2, Y_2) = 0.$$

5. Both V_1 and V_2 are involutive and $(V_1, \varphi'_1), (V_2, \varphi'_2)$ are CR-structures iff

(5.14)
$$N_F = 0, \ N_{\varphi'_{\alpha}}(X_{\alpha}, Y_{\alpha}) = 0, \alpha = 1, 2.$$

Definition 5.2. An appc-structure (F, G, H) is called integrable if there exists an atlas on M so that the associated natural bases are adapted bases for this structure.

Theorema 5.3. An appc-structure (F, G, H) is integrable iff one of the following conditions holds

(5.15)
$$N_F = N_G = N_H = 0; N_F = N_{\varphi_1'} = N_{\varphi_2'} = 0,$$
$$N_{\varphi_1 \varphi_2}(X_1, Y_2) = 0; N_{\varphi_1} = N_{\varphi_2} = 0.$$

Proof. If the apbc-structure (F, G, H) is integrable, then there exists an atlas on M so that in the associated natural bases, the tensor fields $F, G, H, \varphi_1, \varphi_2, \varphi'_1, \varphi'_2$ are given by (2.8) and hence all the conditions 5.15 are satisfied.

Conversely, if $N_F = N_G = N_H = 0$, then from $N_F = 0$, it results (see [11]), that the distributions V_1 and V_2 are involutive and so there exists an atlas on M so that the leaves of V_1 are given locally by $x^a = const, a = 1, 2, \ldots, 2n_2$ and x^i , with $i = 1, 2, \ldots, 2n_1$, are the coordinates on them. The leaves of V_2 are given by $x^i = const$ and x^a are the local coordinates on them. Hence in the natural bases associated to this atlas, F is given by (2.8). Then from the integrability of G and H, [8], it follows $N_G(X_1, Y_1) = 0$, $N_H(X_2, Y_2) = 0$, which give us $N_{\varphi'_1} = N_{\varphi'_2} = 0$, i.e. the ac-structures φ'_1 and φ'_2 on the leaves of V_1 and V_2 respectively, are integrable. Therefore we can take a new atlas on M with the new coordinates of the form $s^p = s^p(x^i), t^p = t^p(x^i), p = 1, 2, \ldots, n_1, i = 1, 2, \ldots, 2n_1$ on the leaves of V_1 and $u^{\alpha} = u^{\alpha}(x^{\alpha}), v^{\alpha} = v^{\alpha}(x^{\alpha}), \alpha = 1, 2 \dots, n_2, a = 1, 2, \dots, 2n_2$ on the leaves of V_2 , so that in these coordinates φ'_1 and φ'_2 and hence $F, G, H, \varphi_1, \varphi_2$ will be given by (2.8). As from the conditions 5.15₂ or 5.15₃ it follows $N_F = N_G = N_H = 0$, the theorem is proved.

Theorem 5.4. The apbc-structure (F, G, H) is integrable iff there exists on M a symmetric FGH-connection.

Proof. If the apbc-structure (F, G, H) is integrable, from the integrability of F it follows (see [11]), that exists a symmetric F-connection ∇^0 on M. Then, considering the connection

(5.16)
$$\nabla_X = \frac{1}{2} (\nabla^0_X - G \circ \nabla^0_X \circ G),$$

i.e. the conjugate of ∇^0 with respect to G, we obtain $\nabla F = \nabla G = \nabla H = 0$. Hence ∇ is a (F, G, H)-connection. For the torsion of ∇ we get

(5.17)
$$T(X,Y) = \frac{1}{2} [(\nabla^0_X G)(GY) - (\nabla^0_Y G)(GX)].$$

But ∇ being a *G*-connection, from [8], we have for N_G

$$(5.18) \ N_G(X,Y) = T(X,Y) + G(T(GX,Y)) + G(T(X,GY)) - T(GX,GY),$$

and substituting T from 5.17, we obtain finally,

112

(5.19)
$$N_G(X,Y) = 2T(X,Y).$$

Hence, G being integrable, one has $N_G = 0$ and so T = 0, i.e. ∇ is a symmetric F, G, H-connection.

Conversely, if there exists on M a symmetric (F, G, H)-connection ∇ , then from the expressions 5.18, for N_G and the similar for N_F and N_H , it follows $N_F = N_G = N_H = 0$, i.e. the appc-structure (F, G, H) is integrable. From the previous Theorem, it results.

Theorem 5.5. For a Riemannian mapc-structure (F, G, H, g_1) on M, with the apbc-structure (F, G, H) integrable, one obtains;

1. (F, g_1) and (F, g_2) are respectively Riemannian and pseudo- Riemannian locally product structures.

2. $(G, g_1), (H, g_1)$ and $(G, g_2), (H, g_2)$ are respectively Hermitian and indefinite Hermitian structures.

3. (φ'_1, γ'_1) and (φ'_2, γ'_2) are Hermitian structures on the leaves of the distributions V_1 and V_1 respectively.

6. Integrability for the almost symplectic structures ω_1 and ω_2 . For the exterior differential of the as-structures ω_1 and ω_2 , taking $X_{\alpha}, Y_{\alpha}, Z_{\alpha} \in V_{\alpha}, \alpha = 1, 2$, we obtain

$$d\omega_{1}(X_{1}, Y_{1}, Z_{1}) = d\psi_{1}(X_{1}, Y_{1}, Z_{1}),$$

$$3d\omega_{1}(X_{1}, Y_{1}, Z_{2}) = (\mathcal{L}_{Z_{2}}\psi_{1})(X_{1}, Y_{1}) - \psi_{2}(Z_{2}, [X_{1}, Y_{1}]),$$

$$3d\omega_{1}(X_{1}, Y_{2}, Z_{2}) = (\mathcal{L}_{X_{1}}\psi_{2})(Y_{2}, Z_{2}) + \psi_{1}(X_{1}, [Y_{2}, Z_{2}]),$$

$$d\omega_{1}(X_{2}, Y_{2}, Z_{2}) = d\psi_{2}(X_{2}, Y_{2}, Z_{2}).$$

$$d\omega_{2}(X_{1}, Y_{1}, Z_{1}) = d\psi_{1}(X_{1}, Y_{1}, Z_{1}),$$

$$3d\omega_{2}(X_{1}, Y_{1}, Z_{2}) = (\mathcal{L}_{Z_{2}}\psi_{1})(X_{1}, Y_{1}) + \psi_{2}(Z_{2}, [X_{1}, Y_{1}]))$$

$$3d\omega_{2}(X_{1}, Y_{2}, Z_{2}) = -(\mathcal{L}_{X_{1}}\psi_{2})(Y_{2}, Z_{2}) + \psi_{1}(X_{1}, [Y_{2}, Z_{2}]),$$

$$d\omega_{2}(X_{2}, Y_{2}, Z_{2}) = -d\psi_{2}(X_{2}, Y_{2}, Z_{2}).$$

From here it results

Theorem 6.1. 1. The as-structure ω_1 is integrable iff

(6.2)
$$\begin{aligned} d\psi_1(X_1, Y_1, Z_1) &= 0, (\mathcal{L}_{Z_2}\psi_1)(X_1, Y_1) = \psi_2(Z_2, [X_1, Y_1]), \\ (\mathcal{L}_{X_1}\psi_2)(Y_2, Z_2) &= -\psi_1(X_1, [Y_2, Z_2]), d\psi_2(X_2, Y_2, Z_2) = 0. \end{aligned}$$

2. The as-structure ω_2 is integrable iff

(6.3)
$$\begin{aligned} d\psi_1(X_1, Y_1, Z_1) &= 0, \quad \mathcal{L}_{Z_2}\psi_1(X_1, Y_1) = -\psi_2(Z_2, [X_1, Y_1]), \\ \mathcal{L}_{X_1}\psi_2(Y_2, Z_2) &= \psi_1(X_1, [Y_2, Z_2]), \quad d\psi_2(X_2, Y_2, Z_2) = 0. \end{aligned}$$

3. Both ω_1 and ω_2 are integrable iff

(6.4)
$$N_F = 0, \ d\psi_{\alpha}(X_{\alpha}, Y_{\alpha}, Z_{\alpha}) = 0, \ \alpha = 1, 2, \mathcal{L}_{Z_2}\psi_1(X_1, Y_1) = \mathcal{L}_{X_1}\psi_2(Y_2, Z_2) = 0.$$

It results from here

Theorem 6.2. If for a Riemannian mapbc-structure (F, G, H, g_1) , the associated 2-forms ω_1 and ω_2 are integrable, then:

1. (F, g_1) and (F, g_2) are respectively Riemannian and pseudo- Riemannian locally product structures.

2. $(G, g_1), (H, g_1)$ and $(G, g_2), (H, g_2)$ are respectively almost Kähler and indefinite almost Kähler structures.

3. (φ'_1, γ'_1) and (φ'_2, γ'_2) are almost Kähler structures on the leaves of V_1 and V_2 respectively.

4. Each vector field $Z_2 \in V_2$ (resp. $X_1 \in V_1$) generates a 1-parameter group of symplectomorphisms between the leaves of V_1 (resp. V_2).

In particular, from Theorem 5.2 and 6.2 and from [8,II,p.148] it follows

Theorem 6.3 If for a Riemannian mapbc-structure (F, G, H, g_1) , on M, the structures almost complex G, H and almost symplectic ω_1, ω_2 are integrable then:

1. (F, g_1) and (F, g_2) are respectively Riemannian and pseudo- Riemannian locally decomposable structures.

2. $(G, g_1), (H, g_1)$ and $(G, g_2), (H, g_2)$ are respectively Kahler and indefinite Kähler structures.

3. (φ'_1, γ'_1) and (φ'_2, γ'_2) are Kähler structures on the leaves of V_1 and V_2 respectively.

7. Example. Let N be a manifold, M = TN the total space of the tangent bundle $\pi : TN \to N$ and $VTN = Ker T\pi$ the vertical subbundle of TN. Denote by $(x^i), (x^i, y^i)$ the local coordinates on N and TN and by $(\partial i), (\partial i, \partial i)$ the corresponding local bases, where $\partial_i = \frac{\partial}{\partial x^i}; \dot{\partial}_i = \frac{\partial}{\partial y^i}, i =$

1,2,...,n. Also we denote by $(d^i), (d^i, \dot{d}^i)$, where $d^i = dx^i, \dot{d}^i = dy^i$, the dual local bases on N and TN. Setting for each 1-form $\alpha \in \mathcal{D}_1(N)$, given locally by $\alpha(x) = \alpha_i(x)d^i, \gamma\alpha(z) = \alpha_i(x)y^i$, where $z = (x, y) \in T_xN$, we obtain a class of functions on TN with the property that every vector field $A \in \mathcal{D}^1(TN)$ is uniquely determined by its values on these functions. The mappings γ may be extended to tensor fields $S \in \mathcal{D}_1^1(N)$ by putting

(7.1)
$$\gamma S(\gamma \alpha) = \gamma(\alpha \circ S), \quad \forall \alpha \in \mathcal{D}_1(N).$$

Locally, if $S(x) = S_j^i(x)\partial_i \otimes d^j$, then $\gamma S(z) = S_j^i(x)y^j\partial_i$, hence γS is a vertical vector field on TN. Let then ∇ be a linear connection and X a vector field on N. Setting

(7.2)
$$X^{h}(\gamma \alpha) = \gamma(\nabla_{X} \alpha), X^{v}(\gamma \alpha) = \alpha(X) \circ \pi, \ \forall \alpha \in \mathcal{D}_{1}(N),$$

we obtain two vector fields on TN called respectively the horizontal and the vertical lifts of X. We have the following useful relations.

(7.3)
$$\begin{aligned} f^h &= f^v = f \circ \pi, (fX)^h = f^h X^h, (fX)^v = f^v X^v \\ \left[X^h, Y^h \right] &= [X, Y]^h - \gamma R_{XY}, \quad \left[X^h, Y^v \right] = (\nabla_X Y)^v, [X^v, Y^v] = 0, \end{aligned}$$

where $f \in C^{\infty}(N), X, Y \in \mathcal{D}^{1}(N)$ and R is the curvature tensor of ∇ . Setting

(7.4)
$$F(X^h) = X^h, \ F(X^v) = -X^v, \ \forall X \in \mathcal{D}^1(N),$$

we obtain an ap-structure F on TN, whose +1 and -1 eigendistributions (subbundles) are respectively the horizontal distribution $V_1 = HTN$ associated to connection ∇ and the vertical distribution $V_2 = VTN$ of the tangent bundle TN. For $f \in \mathcal{D}_1^1(N)$ and $g \in \mathcal{D}_2^0(N)$, we define the horizontal (h)and vertical (v) lifts by (7.5)

$$\begin{split} f^{h}(X^{h}) &= f(X)^{h}, f^{h}(X^{v}) = 0, ; \quad f^{v}(X^{h}) = 0, \quad f^{v}(X^{v}) = f(X)^{v}; \\ g^{h}(X^{h}, Y^{h}) &= g(X, Y)^{v}, g^{h}(X^{h}, Y^{v}) = g^{h}(X^{v}, Y^{h}) = g^{h}(X^{v}, Y^{v}) = 0, \\ g^{v}(X^{h}, Y^{h}) &= g^{v}(X^{h}, Y^{v}) = g^{v}(X^{v}, Y^{h}) = 0, g^{v}(X^{v}, Y^{v}) = g(X, Y)^{v}. \end{split}$$

Let now (f,g) be an almost Hermitian structure on N and $\omega = g \circ I \times f$ the associated 2-form. Setting

(7.6)
$$F = I^h - I^v, \ G = f^h + f^v, \ H = f^h - f^v,$$

114

we obtain the ap-structure F given by (7.4) and two ac-structures G and H, which satisfy the conditions (2.1), i.e. determine an appc-structure on TN. Putting then

(7.7)
$$g_1 = g^h + g^v, g_2 = g^h - g^v, \omega_1 = \omega^h + \omega^v, \omega_2 = \omega^h - \omega^v,$$

we get that g_1, g_2 determine Riemannian and pseudo-Riemannian structures respectively and ω_1, ω_2 as-structures on TN, which satisfy the conditions (3.1) and (3.2). Hence, we have

Theorem 7.1 Given an almost Hermitian structure (f,g) with the associated 2-form ω and a linear connection ∇ on N, one obtains by the formulas (7.6) and (7.7) a Riemannian mapbc-structure (F, G, H, g_1) , with the associated metric g_2 and two as-structures (ω_1, ω_2) on the manifold TN. The pair of the associated supplementary cc-structures is given by $\varphi_1 = f^h, \varphi_2 = f^v$, the pairs of induced almost Hermitian structures on the distributions $V_1 = HTM$ and $V_2 = VTM$ by $(f^h, g^h)/V_1, (f^v, g^v)/V_2$ and the supplementary almost CR-structures by $(V_1, f^h/V_1), (V_2, f^v/V_2)$.

For a connection ∇ on N we define the diagonal lift D, (see [6]), by

(7.8)
$$D_{X^h}Y^h = (\nabla_X Y)^h, D_{X^h}Y^v = (\nabla_X Y)^v,$$
$$D_{X^v}Y^h = D_{X^v}Y^v = 0, \forall X, Y \in \mathcal{D}^1(N).$$

The nonvanishing components of the torsion and the curvature tensor fields of D, are given by

(7.9)
$$\begin{aligned} \mathcal{T}(X^h, Y^h) &= T(X, Y)^h + \gamma R_{XY}, \\ \mathcal{R}_{X^h Y^h} Z^h &= (R_{XY} Z)^h, R_{X^h Y^h} Z^v = (R_{XY} Z)^v, \end{aligned}$$

where T and R are the torsion and curvature tensors of ∇ . After that, for the covariant derivatives with respect to D, of F, G, H, g_{α} and $\omega_{\alpha}, \alpha = 1, 2$ we obtain

$$DF = 0; D_{X^{h}}G = (\nabla_{X}f)^{h} + (\nabla_{X}f)^{v}, D_{X^{v}}G = 0;$$

$$D_{X^{h}}H = (\nabla_{X}f)^{h} - (\nabla_{X}f)^{v}, D_{X^{v}}H = 0;$$

$$D_{X^{h}}g_{1} = (\nabla_{X}g)^{h} + (\nabla_{X}g)^{v}, D_{X^{v}}g_{1} = 0;$$

$$D_{X^{h}}g_{2} = (\nabla_{X}g)^{h} - (\nabla_{X}g)^{v}, D_{X^{v}}g_{2} = 0;$$

$$D_{X^{h}}\omega_{1} = (\nabla_{X}\omega)^{h} + (\nabla_{X}\omega)^{v}, D_{X^{v}}\omega_{1} = 0;$$

$$D_{X^{h}}\omega_{2} = (\nabla_{X}\omega)^{h} - (\nabla_{X}\omega)^{v}, D_{X^{v}}\omega_{2} = 0.$$

Hence, DF = 0 always, DG = DH = 0, iff $\nabla f = 0, Dg_{\alpha} = 0, \alpha = 1, 2$ iff $\nabla g = 0$ and $D\omega_{\alpha} = 0, \alpha = 1, 2$ iff $\nabla \omega = 0$. So we have

Theorem 7.2. The diagonal lift D on TN, for a connection ∇ on N, is a (F, G, H, g_1) -connection iff ∇ is a (f, g)-connection, i.e. iff ∇ is given by

(7.11)
$$\nabla = \psi_f \circ \psi_g(\nabla^0) + \chi_f \circ \chi_g(\tau),$$

with $\nabla^0 \in C(N)$ fixed and $\tau \in \mathcal{D}_2^1(N)$ arbitrary.

For the Nijenhuis tensors of F, G and H one obtains (7.12) $N_F(X^h, Y^h) = 4\gamma R_{XY}, N_F(X^h, Y^v) = 0, N_F(X^v, Y^v) = 0;$ $N_F(X^h, Y^h) = N_F(X, Y)^h + \gamma [R_F - R_F - R_F$

$$N_{G}(X^{h}, Y^{h}) = N_{f}(X, Y)^{h} + \gamma [R_{XY} - R_{fXfY} + f \circ (R_{fXY} + R_{XfY})],$$

$$N_{G}(X^{h}, Y^{v}) = [(\nabla_{fX}f - f \circ \nabla_{X}f)(Y)]^{v}, N_{G}(X^{v}, Y^{v}) = 0;$$

$$N_{H}(X^{h}, Y^{h}) = N_{f}(X, Y)^{h} + \gamma [R_{XY} - R_{fXfY} - f \circ (R_{fXY} + R_{XfY})],$$

$$N_{H}(X^{h}, Y^{v}) = -[(\nabla_{fX}f + f \circ \nabla_{X}f)(Y)]^{v}, N_{H}(X^{v}, Y^{v}) = 0.$$

From here it results.

116

Theorem 7.3. 1. The ap-structure F is integrable iff R = 0; 2. The ac-structure G is integrable iff

(7.13)
$$N_{f} = 0, \nabla_{fX}f - f \circ \nabla_{X}f = 0, R_{XY} - R_{fXfY} + f \circ (R_{fXY} + R_{XfY}) = 0;$$

3. The ac-structure H is integrable iff

(7.14)
$$N_f = 0, \nabla_{fX}f + f \circ \nabla_X f = 0, R_{XY} - R_{fXfY} - f \circ (R_{fXY} + R_{XfY}) = 0;$$

4. Both the ac-structure G and H are integrable iff

(7.15)
$$N_f = 0, \nabla f = 0, R_{XY} - R_{fXfY} = 0;$$

5. The apbc-structure (F, G, H) is integrable iff

(7.16)
$$N_f = 0, \nabla f = 0, R = 0.$$

For the exterior derivative of the 2-forms ω_1 and ω_2 we obtain

$$d\omega_1(X^h, Y^h, Z^h) = d\omega(X, Y, Z)^h, 3d\omega_1(X^h, Y^h, Z^v) = -\gamma(i_Z\omega \circ R_{XY}),$$

$$3d\omega_1(X^h, Y^v, Z^v) = (\nabla_X\omega(Y, Z))^v, d\omega_1(X^v, Y^v, Z^v) = 0;$$

$$d\omega_2(X^h, Y^h, Z^h) = d\omega(X, Y, Z)^h, 3d\omega_2(X^h, Y^h, Z^v) = \gamma(i_Z\omega \circ R_{XY}),$$

$$3d\omega_2(X^h, Y^v, Z^v) = -(\nabla_X\omega)(Y, Z)^v, d\omega_2(X^v, Y^v, Z^v) = 0.$$

So, one has

Theorem 7.4. The 2-forms $\omega_{\alpha}, \alpha = 1, 2$ are simultaneous integrable, namely iff

(7.18)
$$d\omega = 0, \nabla \omega = 0, R = 0.$$

From (7.16) and (7.18) one obtains.

Theorem 7.5. The appc-structure (F, G, H) and the as-structures ω_1, ω_2 are simultaneous integrable iff

(7.19)
$$N_f = d\omega = 0, \nabla f = \nabla \omega = 0, R = 0,$$

with other words iff (f,g) is a Kahler structure and $\nabla a(f,g)$ -connection with vanishing curvature on N.

In particular, these conditions are satisfied if (f,g) is a Kahler structure with vanishing curvature on N and ∇ the Levi-Civita connection of g.

REFERENCES

- ALEKSEEVSKY, D.; SPIRO, A. Invariant CR-structures on compact homogeneous manifolds, Hokkaido Math. J. 32(2003), 209-276.
- BONOME, A.; CASTRO, R.; GARCIA-RIO, E.; HERVELLA, L.M.; MATSUSHITA, Y. Almost complex manifolds with holomorphic distributions. Rendiconti di Matematica, Seria VII, Volume 14, Roma (1994), 567-589.
- CRUCEANU, V. Certaines structures sur le fibré tangent, Proc. Inst. Math Iaşi, Romania, 1974, 41-49.
- CRUCEANU, V. Connections compatibles avec certaines structures sur un fibré vectoriel banachique, Czechoslovak Math. J. 24(99), 1974, 126-142.

- CRUCEANU, V.; FORTUNY, P.; GADEA, P. A Survey on Paracomplex Geometry, Rocky Mountain J. Math v. 26, n.1 (1996), 83-115.
- CRUCEANU, V. A new Definition for Certain Lifts on a Vector Bundle, An. St. Univ., Al.I.Cuza" Iaşi, tom XLII, suppl. s.I-a, 42(1996), 59-72.
- HSU, C.J. On some structures which are similar the quaternion structure, Tohoku Math. J. v.12(1960), 403-428.
- 8. KOBAYASHI, S., NOMIZU, K. Foundations of Differential Geometry II, Wiley-Interscience, New-York, 1969.
- LIBERMANN, P. Sur le probleme d'équivalence de certaines structures infinitésimales, Ann. Math. Pure Appl. 4(36), 1954, 27-120.
- MAKSYM, A.; ZMUREK, A. Manifold with the 3-structure, Ann. Univ. Marie-Curie-Skladowska, v. XLI(1987), 51-63.
- YANO, K.; KON, M. Structures on Manifolds, Series in Pure Mathematics, v. 3, World Scinetific Publishing Co., 1984.

Received: 15.IV.2004

118

Faculty of Mathematics, "Al. I. Cuza" University, Bd. Carol I, No. 11, 700506, Iasi, ROMÂNIA,