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ON ALMOST BIPRODUCT COMPLEX MANIFOLDS∗

BY
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Abstract. One defines the almost biproduct complex (abpc) structure and one an-
alyzes its equivalence with other structures on a manifold. One studies then the metrics
and connections compatible with such a structure, the involutivity of the associated distri-
butions and the integrability of these structures. An example of a metric (abpc)-structure
on the tangent bundle of a Riemannian manifold is also given.
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1. Introduction. Let F and P be two (1, 1)-tensor fields on a manifold
M so that the endomorphisms defined by these are: both almost product,
or one almost product and other almost complex, or both almost complex,
which commute or anticommute. With the triplet (F, P, J = P ◦F ) we can
form the following four structures:

1) F 2 = P 2 = J2 = F ◦ P ◦ J = I,

2) F 2 = P 2 = −J2 = F ◦ P ◦ J = I,

3) −F 2 = P 2 = J2 = F ◦ P ◦ J = −I,

4) F 2 = P 2 = J2 = F ◦ P ◦ J = −I,

called respectively: almost hyperproduct (ahp), almost biproduct complex
(abpc), almost product bicomplex (apbc) and almost hypercomplex (ahc).

∗This paper was partially supported by CNCSIS-ROMÂNIA
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Along the time all these structures, with different others denominations,
were considered, together or separately, by: Liberman [10], Cruceanu
[3,6,7], Bonome, Castro, Garcia-Rio, Hervella and Matsushita [2],
Hsu [8], Macsym and Zmurek [11], Salamon [13], Santamaria [14,15]
Vidal and Vidal Costa [16], Yano and Ako [17] and many others.

Continuing the recent studies for two of these structures [6,7], in this
paper, we consider the (abpc)-structures. Firstly, we give a new definition
for an (abpc)-structure and we analyze its equivalence with many other
important structures on a manifold. We study then, metrics, symplectic
structures and linear connections compatible with such a structure, the in-
volutivity of the associated distributions and the integrability of the (abpc)-
structures, using some canonical compatible connections. An example of a
metric (abpc)-structure on the total space of the tangent bundle of a Rie-
mannian manifold is also given.

2. Almost biproduct complex structures and equivalent struc-
tures. Let M be a paracompact and connected manifold, F(M) the ring
of real functions, T p

q (M) the F(M)-module of (p, q)-tensor fields and T (M)
the F(M)-tensor algebra of M , all in the category of C∞-manifolds. For a
distribution W on M we denote by T 1(M,W ), the F(M)-module of C∞-
sections in the subbundle W .

Definition 2.1. An almost biproduct complex (abpc)-structure on the
manifold M is a triplet (F, P, J) of (1, 1)-tensor fields which satisfy

(2.1) F 2 = P 2 = −J2 = F ◦ P ◦ J = I.

An almost biproduct complex manifold is a manifold endowed with an (abpc)-
structure.

It is easy to see that the conditions (2.1) are equivalent with the property
that F and P are almost product (ap)-structures and J is an almost complex
(ac)-structure on M , which satisfy the relations

(2.2) F ◦ P = −P ◦ F = −J, P ◦ J = −J ◦ P = F, J ◦ F = −F ◦ J = P.

A structure (F, P, J) which satisfies the conditions (2.1) was called by differ-
ent authors; almost quaternionic of the second kind, or almost antiquater-
nionic, or almost paraquaternionic structure.
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Considering the projectors F± of F and P± of P , given by

(2.3) F+ =
I + F

2
, F− =

I − F

2
, P+ =

I + P

2
, P− =

I − P

2
,

and the eigendistributions (subbundles) of TM

(2.4) V1 = F+, V2 = F−; V3 = P+, V4 = P−,

one obtains V2 = P (V1) and V4 = F (V3). Hence, dimVi = n, i = 1, 2, 3, 4,
dimM = 2n and Tr F = Tr P = 0. That is, F and P are almost paracom-
plex (apc)-structures on M , which anticommute.

Definition 2.2. A pair (F, P ) of anticommuting almost product struc-
tures on a manifold M is called an almost biparacomplex structure.

From the considerations in the above it follows:

Proposition 2.1. If (F, P, J) is an (abpc)-structure on M , then (F, P )
is an almost biparacomplex structure. Conversely if (F, P ) is an almost
biparacomplex structure on M , then (F, P, J = F ◦P ) is an (abpc)-structure.

Definition 2.3. A pair (F, J) formed by an (ap)-structure F and an
(ac)-structure J , which anticommute, is called an almost product complex
(apc)-structure on M .

One has

Proposition 2.2. If (F, P, J) is an (abpc)-structure on M , then the
pairs (F, J) and (P, J) are (apc)-structures. Conversely if (F, J) is an (apc)-
structure on M , then (F, P = J ◦ F, J) is an (abpc)-structure.

Definition 2.4. An almost tangent (at)-structure on M is an endo-
morphism A of TM , with the properties A2 = 0,Ker A = ImA. An almost
bitangent (abt)-structure on M is a pair (A,B) of (at)-structures so that
A ◦B +B ◦A = I.

From (2.1) one obtains:

Proposition 2.3. If (F, P, J) is an (abpc)-structure on M then setting

(2.5) A =
1
2
(F + J), B =

1
2
(F − J); C =

1
2
(P + J), D =

1
2
(P − J),
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the pairs (A,B) and (C,D) are (abt)-structures on M . Conversely, if (A,B)
is an (abt)-structure on M , then setting

(2.6) F = A+B, J = A−B, P = J ◦ F,

the triplet (F, P, J) is an (abpc)-structure.

Definition 2.5. An α-structure on the manifold M is a triplet (V1, V2, V3)
of distributions on M , by twos supplementary.

Considering the eigendistributions Vi, i = 1, 2, 3, 4 associated to an (abpc)-
structure, one obtains:

Proposition 2.4. If (F, P, J) is an (abpc)-structure on M and V1 =
F+, V2 = F−, V3 = P+, V4 = P− are the eigendistributions of F and
P , then the triplets (V1, V2, V3), (V2, V3, V4), (V3, V4, V1), (V4, V1, V2) are α-
structures. Conversely, if (V1, V2, V3) is an α-structure on M , then putting
F+ = V1, F

− = V2, P
+ = V3, P

− = F (V4) the triplet (F, P, J = P ◦ F ) is
an (abpc)-structure.

Definition 2.6. A β-structure on M is a pair (H,W ) where H is an
(ap)-structure and W a distribution on M , so that TM = W ⊕H(W ).

From (2.4) it results:

Proposition 2.5. If (F, P, J) is an (abpc)-structure on M , then the
pairs (F, P+), (F, P−), (P, F+), (P, F−) are β-structures. Conversely, if
(F,W ) is a β-structure on M , then setting P+ = W and P− = F (W ),
the triplet (F, P, J = P ◦ F ) is an (abpc)-structure and one has

(2.7) P (X+FY ) = X−FY, J(X+FY ) = Y −FX, X, Y ∈ T 1(M,W ).

Definition 2.7. A γ-structure on M is a pair (H,W ), where H is an
(ac)-structure and W a distribution on M so that TM = W ⊕ JW.

From (3.4) one obtains:

Proposition 2.6. If (F, P, J) is an (abpc)-structure on M , then the
pairs (J, F+), (J, F−), (J, P+), (J, P−) are γ-structures. Conversely, if (J,W )
is a γ-structure on M , then setting

(2.8) F (X +JY ) = X −JY, P (X +JY ) = Y +JX, X, Y ∈ T 1(M,W ),
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the triplet (F, P, J) is an (abpc)-structure.

Definition 2.8. A δ-structure on M is a pair (H,W ), where H is an
(at)-structure and W a distribution on M so that TM = W ⊕HW.

Proposition 2.7. If (F, P, J) is an (abpc)-structure on H, then the
pairs (F+J

2 , P+), (F−J
2 , P−), (P+J

2 , F+), (P−J
2 , F−) are δ-structures. Con-

versely, if (A,W ) is a δ-structure on M , then setting

(2.9)
F (X +AY ) = X −AY, P (X +AY ) = Y +AX,

J(X +AY ) = −Y +AX, X, Y ∈ T 1(M,W ),

the triplet (F, P, J) is an (abpc)-structure.
Summarizing the previous considerations one obtains:

Theorem 2.1. An (apbc)-structure on a manifold is equivalent with
each of the following structures: almost biparacomplex, almost product com-
plex, almost bitangent, α, β, γ and δ.

Definition 2.9. An adapted local basis for the apbc-structure (F, P, J)
on M is a local basis (ei, P ei), i = 1, 2, . . . , n, where (ei) is a local basis on
V1 = F+.

In such a basis the tensor fields F, P, J have the matrices

(2.10) F =
[
In 0
0 −In

]
, P =

[
0 In
In 0

]
, J =

[
0 −In
In 0

]
From here it follows:

Theorem 2.2. The structural group for the tangent bundle of a 2n-
dimensional manifold M , endowed with an (abpc)-structure, is reducible, to
the diagonal subgroup of the direct product GL(n,R)×GL(n,R).

3. Metric and symplectic structures compatible with an (abpc)-
structure. Let h be a Riemannian metric on the (abpc)-manifold M and

(3.1)
g1 = h ◦ (I × I + F × F + P × P + J × J),

g2 = g1 ◦ I × F, g3 = g1 ◦ I × P, ω = g1 ◦ I × J.
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From here and (2.1) it results the following table of compatibilities:

(3.2)

◦ F P J
g1 g1 ◦ F × F = g1 g1 ◦ P × P = g1 g1 ◦ J × J = g1

g1 ◦ I × F = g2 g1 ◦ I × P = g3 g1 ◦ I × J = ω

g2 g2 ◦ F × F = g2 g2 ◦ P × P = −g2 g2 ◦ J × J = −g2
g2 ◦ I × F = g1 g2 ◦ I × P = −ω g2 ◦ I × J = −g3

g3 g3 ◦ F × F = −g3 g3 × P × P = g3 g3 ◦ J × J = −g3
g3 ◦ I × F = ω g3 ◦ I × P = g1 g3 ◦ I × J = g2

ω ω ◦ F × F = −ω ω ◦ P × P = −ω ω ◦ J × J = ω
ω ◦ I × F = g3 ω ◦ I × P = −g2 ω ◦ I × J = −g1

Taking into account (2.1), (3.1) and (3.2), one obtains that g1 is a Rie-
mannian metric, g2, g3 are neutral metrics and ω is an almost symplectic
(as)-structure on M .

Definition 3.1. We call the quatriplet (F, P, J, g1), which satisfies the
conditions (2.1), (3.1) and (3.2), a Riemannian metric almost biproduct
complex (mabpc)-structure on M and g2, g3, ω the associated neutral metrics
and almost symplectic structure.

From the previous considerations we can state the following result:

Theorem 3.1. A Riemannian (mabpc)-structure (F, P, J, g1) deter-
mines on M :

a) two Riemannian almost paracomplex structures (F, g1) and (P, g1),
with the associated neutral metrics g2 and g3 respectively,

b) two neutral metric almost paracomplex structures (F, g2) and (P, g3)
with the associated Riemannian metric g1,

c) two almost para-Hermitian structures (F, g3) and (P, g2), with the as-
sociated almost symplectic 2-forms ω and −ω respectively,

d an almost Hermitian structure (J, g1) with the associated almost sym-
plectic 2-form ω and

e) two almost anti-Hermitian structures (J, g2) and (J, g3) with the as-
sociated neutral metrics −g3 and g2 respectively.
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Setting g = g1/V1 × V1, one obtain from (3.1) and (3.2), for Xα, Yα ∈
T 1(M,Vα), α = 1, 2,,
(3.3)

g1(X1, Y1) = g(X1, Y1), g1(X1, Y2) = 0, g1(X2, Y2) = g(PX2, PY2),

g2(X1, Y1) = g(X1, Y1), g2(X1, Y2) = 0, g2(X2, Y2) = −g(PX2, PY2),

g3(X1, Y1) = 0, g3(X1, Y2) = g(X1, PY2), g3(X2, Y2) = 0,

ω(X1, Y1) = 0, ω(X1, Y2) = −g(X1, PY2), ω(X2, Y2) = 0

and from here and Proposition 2.1 it results:

Proposition 3.1. A Riemannian (mabpc)-structure (F, P, J, g1) on M
is uniquely determined by an almost biparacomplex structure (F, P ) and a
Riemannian metric g on the distribution V1 = F+.

Definition 3.2. An adapted local basis to the Riemannian (mabpc)-
structure (F, P, J, g1) is an adapted basis (ei, P ei) to the (abpc)-structure
(F, P, J), where (ei) is an orthonormal basis on V1 = F+.

In such a basis, the matrices, associated to structures gα, α = 1, 2, 3 and
ω, coincide with the matrices of I, F, P, J respectively. So one obtains

Theorem 3.2. The structural group, for the tangent bundle of a 2n-
dimensional manifold M , endowed with a Riemannian (mapbc)-structure,
is reducible to the diagonal subgroup of the direct product SO(n)× SO(n).

4. Connections compatible with an (abpc)-structure

Definition 4.1. A linear connection ∇ on M is called compatible with
the (abpc)-structure (F, P, J) or is a (F, P, J)-connection iff

(4.1) ∇F = ∇P = ∇J = 0.

Let C(M) be the F(M)-affine module of connections on M . Setting for
∇ ∈ C(M), τ ∈ T 1

2 (M) and X ∈ T 1(M),

(4.2)

ψF (∇)X =
1
2
(∇X + F ◦ ∇X ◦ F ), χF (τ)X =

1
2
(τX + F0τX ◦ F ),

ψP (∇)X =
1
2
(∇X + P ◦ ∇X ◦ P ), χP (τ)X =

1
2
(τX + P ◦ τX ◦ P ),

ψJ(∇)X =
1
2
(∇X − J ◦ ∇X ◦ J), χJ(τ)X =

1
2
(τX − J ◦ τX ◦ J),
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we obtain as in [6,7], the following:

Proposition 4.1. The set CFPJ(M) of the connections on M , compat-
ible with an (abpc)-structure (F, P, J), is given by

(4.3) ∇ = ψF ◦ ψP (∇◦) + χF ◦ χP (τ),

where ∇0 ∈ C(M) is fixed and τ ∈ T 1
2 (M) is arbitrary.

Taking here τ = 0, it follows that an (abpc)-structure (F, P, J) asso-
ciates to each connection ∇0 ∈ C(M), a (F, P, J)-connection ∇ = ψF ◦
ψP (∇◦). This connection may be written in the form

(4.4) ∇X =
1
4
(
∇0

X +F ◦∇◦
X ◦F +P ◦∇◦

X ◦F −J ◦∇0
X ◦J

)
, X ∈ T 1(M),

i.e. ∇ is the mean connection of ∇0 and its conjugate connections [6] with
respect to F, P and J .

Definition 4.2. A connection ∇ is compatible with the structure α =
(V1, V2, V3) iff it preserves by parallelism the distributions Vi, i = 1, 2, 3.

Definition 4.3. A connection ∇ is compatible with one of the structures
β, γ, δ = (H,W ) iff it is a H-connection which preserves the distribution W .

It is not difficult to prove

Proposition 4.2. A connection ∇ on M is compatible with the (abpc)-
structure (F, P, J) iff it satisfies one of the conditions:

1. The tensor fields from one of the pairs (F, P ), (P, J), (J, F ), (A,B) are
covariant constant,

2. ∇ is compatible with one of the structure α, β, γ, δ.

Setting now, for a connection ∇ on M ,
(4.5)

i
∇XY = Fi(∇XY ), i = 1, 2,

i
∇XY = Pi(∇XY ), i = 3, 4, X, Y ∈ T 1(M),

one finds that the operators
i
∇, i = 1, 2, 3, 4 are F(M)-linear in the first

argument, R-linear in the second and satisfy

(4.6)

i
∇X(fY ) = X(f)Fi(Y ) + f

i
∇XY, i = 1, 2,

i
∇X(fY ) = X(f)Pi(Y ) + f

i
∇XY, i = 3, 4,
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for f ∈ F(M) and X,Y ∈ T 1(M). It results from here that (
i
∇, Fi), i = 1, 2

and (
i
∇, Pi), i = 3, 4 are quasi-connections in the sense of Otsuki [12]. The

restrictions of
i
∇, with respect to the second argument, to T 1(M,Vi) give the

connections induced by ∇ on the subbundles Vi [6]. When ∇ is compatible

with the (abpc)-structure (F, P, J), the connections
i
∇ coincide with the re-

strictions of ∇, with respect to second argument, to T 1(M,Vi), i = 1, 2, 3, 4.
If ∇ is an arbitrary connection on M we can consider for the vector

1-forms Fi, i = 1, 2 and Pi, i = 3, 4, the exterior covariant derivatives with
respect to ∇ given by

(4.7)
dFi(X,Y ) = ∇X(FiY )−∇Y (FiX)− Fi[X,Y ], i = 1, 2

dPi(X,Y ) = ∇X(PiY )−∇Y (PiX)− Pi[X,Y ], i = 3, 4.

It is naturally to call the torsion of the connection
i
∇, induced by∇ to Vi, the

restriction
i
T , of dFi and dPi to corresponding T 1(M,Vi) × T 1(M,Vi), i =

1, 2, 3, 4. So, we have

(4.8)
i
T (Xi, Yi) =

∇XiYi −∇YiXi − Fi[Xi, Yi], i = 1, 2

∇XiYi −∇YiXi − Pi[Xi, Yi], i = 3, 4.

If ∇ is compatible with the (abpc)-structure (F, P, J), we get for
i
T , as

tensor fields on M , the expressions

(4.9)
i
T =

Fi ◦ T ◦ Fi × Fi, i = 1, 2

Pi ◦ T ◦ Pi × Pi, i = 3, 4,

where T is the torsion of ∇.
In this case for the curvature of ∇ one obtains

(4.10) RXY ◦ F = F ◦RXY , RXY ◦ P = P ◦RXY ,

i.e. RXY , as endomorphism of TM , preserves the distributions Vi, i =
1, 2, 3, 4.
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From here it follows, for the curvatures
i
R of

i
∇, considered as tensor

fields on M ,

(4.11)
i
RXY =

RXY ◦ Fi, i = 1, 2

RXY ◦ Pi, i = 3, 4

i.e. the curvature of the induced connection
i
∇ coincides with the restriction

of the curvature R of ∇ to subbundle Vi, i = 1, 2, 3, 4.
We have also the following result:

Proposition 4.3. A connection ∇ on M , compatible with the (abpc)-

structure (F, P, J), is uniquely determined by its restriction
1
∇ (respectively

2
∇) with respect to second argument, to T 1(M,V1) (respectively T 1(M,V2))

or by one of the pairs of partial connections (
1
∇X1 ,

2
∇X2), (

1
∇X2 ,

2
∇X1), with

Xi ∈ T 1(M,Vi), i = 1, 2.
Indeed setting, for Y ∈ T 1(M), Y = Y1 + Y2 with Yi ∈ T 1(M,Vi),

i = 1, 2, from ∇F = 0 it follows ∇XY =
1
∇XY1 +

2
∇XY2. Then, from

∇P = 0 one obtains
2
∇X = P ◦

1
∇X ◦ P and so

(4.12) ∇XY =
1
∇XY1 + (P ◦

1
∇X ◦ P )(Y2) = (P ◦

2
∇X ◦ P )(Y1) +

2
∇XY2.

Putting then X = X1 +X2, one has
i
∇X =

i
∇X1 +

i
∇X2 , i = 1, 2 and from

1
∇X = P ◦

2
∇X ◦ P it follows

(4.13)
1
∇X =

1
∇X1 + P ◦

2
∇X2 ◦ P = P ◦

2
∇X1 ◦ P +

1
∇X2 .

From here, we obtain the following important result:

Theorem 4.1. On a manifold M endowed with an (abpc)-structure
(F, P, J) there exists a unique connection ∇, with torsion T , satisfying the
conditions

(4.14) ∇F = ∇P = 0, T ◦ F1 × F2 = 0,

where F1 and F2 are the projectors of F .
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Uniqueness. Let ∇ be a connection which satisfies (4.14). It results

T (X1, X2) =
2
∇X1X2 −

1
∇X2X1 − F1[X1, X2]− F2[X1, X2] = 0.

As V1 and V2 are supplementary, it follows from here,

1
∇X2X1 = F1[X2, X1],

2
∇X1X2 = F2[X1, X2], ∀Xi ∈ T 1(M,Vi), i = 1, 2.

But, from Proposition 4.3, ∇ being determined by
1
∇X2 and

2
∇X1 , it is

unique.

Existence. Setting for Xi, Yi ∈ T i(M,Vi), i = 1, 2

(4.5)
∇X1Y1 = F1 ◦ P [X1, PY1], ∇X1X2 = F2[X1, X2],

∇X2X1 = F1[X2, X1], ∇X2Y2 = F2 ◦ P [X2, PY2],

and using the relations F1 ◦ P = P ◦ F2, F2 ◦ P = P ◦ F1, one obtains that
∇ is a connection on M which satisfies the conditions (4.14).

Changing the order of F and P (and so of (V1, V2) with (V3, V4)), we
obtain another unique connection ∇′ on M which satisfies the conditions

(4.16) ∇′F = ∇′P = 0, T ′ ◦ P3 × P4 = 0,

where T ′ is the torsion of ∇′.

Definition 4.4. The connections ∇ and ∇′, which satisfy the conditions
(4.14) and (4.16) respectively, will be called the first and the second canonical
connection associated to (abpc)-structure (F, P, J) on M .

From the analogous of (4.15) for ∇′ one obtains:

Proposition 4.4. For an (abpc)-structure (F, P, J) on M , the second
canonical connection ∇′ may be expressed with the help of the first canonical
connection ∇ by the relations:

(4.17)

∇′
X3
X4 = ∇X3X4 − P4(T (X3, X4)),

∇′
X4
X3 = ∇X4X3 − P3(T (X4, X3)),

∇′
X3
Y3 = ∇X3Y3 − P3 ◦ F (T (X3, FY3)),

∇′
X4
Y4 = ∇X4Y4 − P4 ◦ F (T (X4, FY4)).
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From here one obtains

Proposition 4.5. The first and second canonical connection ∇ and ∇′

coincide iff one of the following conditions is satisfied

(4.18) T ◦ P3 × P4 = 0; T ′ ◦ F1 × F2 = 0.

5. Involutivity and integrability. If (F, P, J) is an (abpc)-structure
on M , for the Nijenhuis tensor fields of F and P , we obtain
(4.19)
NF (X1, Y1) = 4F2[X1, Y1], NF (X1, Y2) = 0, NF (X2, Y2) = 4F1[X2, Y2];

NP (X3, Y3) = 4P4[X3, Y3], NP (X3, Y4) = 0, NP (X4, Y4) = 4P3[X4, Y4].

Then, if ∇ (respectively ∇′) is a connection on M , compatible with F
(respectively P ) we get

(4.20)

NF (X1, Y1) = −4F2 ◦ T (X1, Y1)), NF (X1, Y2) = 0,

NF (X2, Y2) = −4F1 ◦ T (X2, Y2);

NP (X3, Y3) = −4P4 ◦ T ′(X3, Y3), NP (X3, Y4) = 0,

NP (X4, Y4) = −P4 ◦ T ′(X4, Y4).

From these formulas it follows:

Theorem 4.2. a) The eigendistribution Vi, i = 1, 2, 3, 4 is involutive iff
it is satisfied respectively one of the following conditions for:

V1: 1) F2[X1, Y1] = 0, 2) NF (X1, Y1) = 0, 3) F2 ◦NF = 0,
4) F2 ◦ T (X1, Y1) = 0.

V2: 1) F1[X2, Y2] = 0, 2) NF (X2, Y2) = 0, 3) F1 ◦NF = 0,
4) F1 ◦ T (X2, Y2) = 0,

V3: 1) P4[X3, Y3] = 0, 2) NP (X3, Y3) = 0, 3) P4 ◦NP = 0,
4) P4 ◦ T ′(X3, y3) = 0,

V4: 1) P3[X4, Y4] = 0, 2) NP (X4, Y4) = 0, 3) P3 ◦NP = 0,
4) P3 ◦ T ′(X4, Y4) = 0,
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where T (respectively T ′) is the torsion of a connection ∇ (respectively ∇′)
compatible with F (respectively P ).

b) V1 and V2 are simultaneous involutive iff NF = 0 or T =
1
T +

2
T ,

where T is the torsion of ∇ and
1
T ,

2
T the torsion of the induced connections

on V1 and V2 respectively.

c) V3 and V4 are simultaneous involutive iff NP = 0, or T ′ =
3

T ′ +
4

T ′,

where T ′ is the torsion of ∇′ and
3

T ′,
4

T ′ the torsion of the induced connec-
tions on V3 and V4 respectively.

d) V1, V2 and V3 are simultaneous involutive iff is satisfied one of the
conditions a), b), c), for each of them.

e) V1, V2, V3 and V4 are simultaneous involutive iff one of the following
conditions is satisfied

NF = NP = 0; T = 0; T ′ = 0,

where T and T ′ are the torsions of the first and second canonical connec-
tions.

Remark. The condition d) is very important because an (abpc)-structu-
re (F, P, J), for which all the distributions V1, V2, V3 are involutive, is equiv-
alent with a 3-web on M [1.] So, the theory of 3-webs is subordinated to the
theory of (abpc)-structures or to anyone of the structures that are equivalent
with them.

Definition 4.5. An (abpc)-structure (F, P, J) is integrable iff there ex-
ists an atlas on M so that the associated natural local bases are adapted to
the structure.

Concerning the integrability for an (abpc)-structure, from [16] one ob-
tains:

Proposition 4.5. An (abpc)-structure (F, P, J) is integrable iff there
exists on M a flat (F, P, J)-connection.

From here and the uniqueness of the canonical connection one obtains:

Theorem 4.3. The (abpc)-structure (F, P, J) is integrable if the first
or the second canonical connections is flat.
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Definition 4.6. A connection ∇ on M is compatible with the Rie-
mannian (mabpc)-structure (F, P, J, g1) or is a (F, P, J, g1)-connection, iff
it satisfies the conditions

(4.21) ∇F = ∇P = ∇g1 = 0.

For such a connection one has also

(4.22) ∇J = ∇g2 = ∇g3 = ∇ω = 0, ∇F1 = ∇F2 = ∇P1 = ∇P2 = 0.

The following theorem holds

Theorem 4.4. Let (F, P, J, g1) be a Riemannian (mabpc)-structure on

M and
1
g = g1/V1 × V1,

2
g = g1/V2 × V2, the induced metrics on V1 and V2.

There exists an unique (F, P, J, g1)-connection D on M , which satisfies the
conditions:

(4.23)
i

DX
i
g = 0,

i
T = 0, X ∈ T 1(M,Vi), i = 1, 2,

where
i
D is the connection on Vi induced by D and

i
T is its torsion.

Uniqueness. Indeed, from Proposition 4.3 it follows that a connection
D, compatible with the (abpc)-structure (F, P, J), is uniquely determined

by
1
DX , X ∈ T 1(M,N1) and

2
DX , X ∈ T 1(M,V2). But, from (4.23) one has

(4.24)
X

i
g(Y, Z) =

i
g(

i
DXY, Z) +

i
g(Y,

i
DXZ),

i
DXY −

i
DYX = Fi[X,Y ], X, Y, Z ∈ T 1(M,Vi), i = 1, 2.

By analogously computation with that used in the Riemannian case, [9]
we obtain, for any X,Y, Z ∈ T 1(M,Vi), i = 1, 2,
(4.25)

2
i
g(

i
DXY, Z) = X

i
g(Y, Z) + Y

i
g(Z,X)− Z

i
g(X,Y )− i

g(Fi[Y, Z], X)

+
i
g(Fi[Z,X], Y ) +

i
g(Fi[X,Y ], Z).

As these formulas determine uniquely
i

DX , X ∈ T i(M,Vi), i = 1, 2, the
uniqueness of D is proved.
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Existence. Let
i

DX , X ∈ T 1(M,Vi), i = 1, 2, be given by (4.25). From
Proposition 4.3, it results that these partial connections determine a con-
nection D on M , compatible with the (abpc)-structure (F, P, J) and by a
simple computation we find that D satisfies also the conditions (4.23) and
that Dg1 = 0.

Definition 4.7. The unique connection D, given by the Theorem 4.4,
will be called the first natural connection associated to Riemannian (mabpc)-
structure (F, P, J, g1).

Remark. The first natural connection D satisfies also the condition:

(4.26)
i
D

i
g = 0, Dgi = 0, i = 1, 2; Dω = 0.

Changing in Theorem 4.4 F with P and (V1, V2) with (V3, V4) one obtains
another connection D′ compatible with the Riemannian (mabpc)-structure
(F, P, J, g1), called the second natural connection.

From here it follows:

Proposition 4.6. The first natural connection D coincides with the
Levi-Civita connection for one of the metrique gi, i = 1, 2, 3 (and so for all)
iff it is torsionless.

In this case D coincides also with the second natural connection D′ and
with the first and second canonical connection ∇ and ∇′. Also in this case
the structures F, P, J , ω are integrable and the distributions Vi, i = 1, 2, 3, 4
are involutive. Hence we have:

Theorem 4.8. If the first natural connection D for the Riemannian
(mabpc)-structure (F, P, J, g1) is torsionless, then one obtains on M :

a) two Riemannian local decomposable structures (F, g1) and (P, g1), with
the associated neutral metrics g2 and g3 respectively,

b) two neutral local decomposable structures (F, g2) and (P, g3), with the
associated Riemannian metric g1,

c) two para-Kähler structures (F, g3) and (P, g2) with the associated sym-
plectic 2-forms ω and −ω, respectively,

d) a Kähler structure (J, g1) with the associated symplectic 2-form ω and
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e) two anti-Kähler structures (J, g2) and (J, g3) with the associated neu-
tral metrics −g3 and g2, respectively.

5. Example. Let N be a paracompact and connected manifold, M =
TN the total space of the tangent bundle π : TN → N and V TN =
Ker Tπ, the vertical subbundle of TN . Denote by (xi) the local coordinates
and by (∂i), (di), where ∂i = ∂

∂xi , d
i = dxi, the associated local dual bases

on N . Setting for each 1-form α ∈ T1(N), given locally by α(x) = αi(x)di,
γα(z) = αi(x)yi, where z = (x, y) ∈ TxN , we obtain a class of functions
on TN , with the property that each vector field A ∈ T 1(TN) is uniquely
determined by its values on these functions. We extend γ to tensor fields
S ∈ T 1

1 (TN) by putting γS(γα) = γ(α ◦ S),∀α ∈ T1(N). Let be then ∇ a
connection on N and X ∈ T 1(N). Setting

(5.1) Xh(γα) = γ(∇Xα), Xv(γα) = α(X) ◦ π, ∀α ∈ T1(N),

we obtain two vector fields on TN , called respectively, the horizontal and
the vertical lift of X. Putting then, for each f ∈ F(N), fh = fv = f ◦ π,
one obtains the following useful formulas

(5.2)
(fX)h = fhXh, (fX)v = fvXv,

[Xh, Y h] = [X,Y ]h − γRXY , [Xh, Y v] = (∇XY )v, [Xv, Y v] = 0,

where X,Y ∈ T 1(N) and R is the curvature of ∇.
Considering then the tensor fields F, PJ given by

(5.3)
F (Xh) = Xh, F (Xv) = −Xv, P (Xh) = Xv, P (Xv) = Xh,

J(Xh) = Xv, J(Xv) = −Xh,

for each X ∈ T 1(N) it comes out that they satisfy (2.1) and so we have:

Proposition 5.1. Given a connection ∇ on N , the tensor fields F, P, J
defined by (5.3) determine an (abpc)-structure on the total space TN .

The eigendistributions Vi, i = 1, 2, 3, 4 associated to F and P are gener-
ated respectively by Xh, Xv, Xh +Xv, Xh−Xv,∀X ∈ T 1(N). For the first
canonical connection, of the (abpc)-structure (F, P, J),on TN , denoted by
D, we obtain from (4.15) and (5.3)

(5.4)
DXhY h = (∇XY )h, DXhY v = (∇XY )v,

DXvY h = DXvY v = 0, X, Y ∈ T 1(N)
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and so it follows:

Proposition 5.2. The first canonical connection of the (abpc)-structure
(F, P, J) on TN , given by (5.3), associated to connection ∇ on N , coincides
with the diagonal lift of ∇, see [5].

Going further, for nonvanishing components of the torsion and curvature
of D, one obtains

(5.5)
T (Xh, Y h) = T (X,Y )h + γRXY ,RXhY hZh = (RXY Z)h,

RXhY hZv = (RXY Z)v,

where T and R are the torsion and curvature of ∇.
From (5.5) and Proposition 4.5 it results:

Proposition 5.3. The (abpc)-structure (F, P, J) on TN , associated by
(5.3) to connection ∇ on N ,is integrable iff ∇ is a flat connection.

Let be now g a Riemannian metric on N , ∇g the Levi-Civita connection
of g and (F, P, J) the (abpc)-structure on TN associated to∇g. We consider
the (0, 2)-tensor fields gh, gv, gvh and ghv on TN given, for each X,Y ∈
T 1(N), by:

(5.6)

gh(Xh, Y h) = g(X,Y ) ◦ π,

gh(Xh, Y v) = gh(Xv, Y h) = gh(Xv, Y v) = 0,

gv(Xh, Y h) = gv(Xh, Y v) = gv(Xv, Y h) = 0,

gv(Xv, Y v) = g(X,Y ) ◦ π,

gvh(Xh, Y h) = gvh(Xh, Y v) = gvh(Xv, Y v) = 0,

gvh(Xv, Y h) = g(X,Y ) ◦ π,

ghv(Xh, Y h) = ghv(Xv, Y h) = ghv(Xv, Y v) = 0,

ghv(Xh, Y v) = g(X,Y ) ◦ π.

Setting then

(5.7) g1 = gh + gv,

we obtain a Riemannian metric on TN , called the Sasaki metric associated
to g which satisfies the conditions

(5.8) g1 ◦ F × F = g1 ◦ P × P = g1 ◦ J × J = g1.
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From here one obtains:

Proposition 5.4. A Riemannian metric g on N determines by (5.3),
(5.6) and (5.7) a Riemannian (mapbc)-structure (F, P, J, g1) on TN , with
the associated metrics g2, g3 and 2-form ω, given by

(5.9) g2 = gh − gv, g3 = gvh + ghv, ω = gvh − ghv.

Denoting by D the first natural connection associated to Riemannian
(mabpc)-structure (F, P, J, g1), given by (5.3) and (5.7), we obtain from
(4.25) and Proposition 4.3,

(5.10) DXhY h = (∇g
XY )h, DXhY v = (∇g

XY )v, DXvY h = DXvY v = 0.

Hence, we have:

Proposition 5.5. The first natural connection of the Riemannian
(mapbc)-structure (F, P, J, g1) on TN , associated to Riemannian metric g
on N , coincide with the diagonal lift for the Levi-Civita connection of the
metric g.

Remark. For a Riemannian metric g on N and its Levi-Civita connec-
tion ∇g, the first natural connection, associated to Riemannian (mabpc)-
structure (F, P, J, g1) coincides with the first canonical connection, associ-
ated to (abpc)-structure (F, P, J) on TN, determined by g.

The nonvanishing components for the first natural connection D are
given by
(5.6)
T (Xh, Y h) = γRg

XY ,RXhY hZh = (Rg
XY Z)h, RXhY hZv = (Rg

XY Z)v,

where Rg is the curvature of ∇g. From here it follows:

Proposition 5.6. The torsion and the curvature for the first natural
connection D are simultaneously zero, namely iff the curvature of the Levi-
Civita connection ∇g of g is zero.
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