ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII "AL.I. CUZA" IAȘI Tomul LII, s.I, Matematică, 2006, f.1

ON ALMOST BIPRODUCT COMPLEX MANIFOLDS*

BY

V. CRUCEANU

Abstract. One defines the almost biproduct complex (abpc) structure and one analyzes its equivalence with other structures on a manifold. One studies then the metrics and connections compatible with such a structure, the involutivity of the associated distributions and the integrability of these structures. An example of a metric (abpc)-structure on the tangent bundle of a Riemannian manifold is also given.

Mathematics Subject Classification 2000: 53C07, C15, C55.

Key words: Almost biproduct complex structures, compatible metrics and connections, involutivity and integrability.

1. Introduction. Let F and P be two (1, 1)-tensor fields on a manifold M so that the endomorphisms defined by these are: both almost product, or one almost product and other almost complex, or both almost complex, which commute or anticommute. With the triplet $(F, P, J = P \circ F)$ we can form the following four structures:

- 1) $F^2 = P^2 = J^2 = F \circ P \circ J = I$,
- 2) $F^2 = P^2 = -J^2 = F \circ P \circ J = I$,
- 3) $-F^2 = P^2 = J^2 = F \circ P \circ J = -I,$
- 4) $F^2 = P^2 = J^2 = F \circ P \circ J = -I$,

called respectively: almost hyperproduct (ahp), almost biproduct complex (abpc), almost product bicomplex (apbc) and almost hypercomplex (ahc).

^{*}This paper was partially supported by CNCSIS-ROMÂNIA

Along the time all these structures, with different others denominations, were considered, together or separately, by: LIBERMAN [10], CRUCEANU [3,6,7], BONOME, CASTRO, GARCIA-RIO, HERVELLA and MATSUSHITA [2], HSU [8], MACSYM and ZMUREK [11], SALAMON [13], SANTAMARIA [14,15] VIDAL and VIDAL COSTA [16], YANO and AKO [17] and many others.

6

Continuing the recent studies for two of these structures [6,7], in this paper, we consider the (abpc)-structures. Firstly, we give a new definition for an (abpc)-structure and we analyze its equivalence with many other important structures on a manifold. We study then, metrics, symplectic structures and linear connections compatible with such a structure, the involutivity of the associated distributions and the integrability of the (abpc)structures, using some canonical compatible connections. An example of a metric (abpc)-structure on the total space of the tangent bundle of a Riemannian manifold is also given.

2. Almost biproduct complex structures and equivalent structures. Let M be a paracompact and connected manifold, $\mathcal{F}(M)$ the ring of real functions, $\mathcal{T}_q^p(M)$ the $\mathcal{F}(M)$ -module of (p, q)-tensor fields and $\mathcal{T}(M)$ the $\mathcal{F}(M)$ -tensor algebra of M, all in the category of C^{∞} -manifolds. For a distribution W on M we denote by $\mathcal{T}^1(M, W)$, the $\mathcal{F}(M)$ -module of C^{∞} sections in the subbundle W.

Definition 2.1. An almost biproduct complex (abpc)-structure on the manifold M is a triplet (F, P, J) of (1, 1)-tensor fields which satisfy

(2.1)
$$F^2 = P^2 = -J^2 = F \circ P \circ J = I.$$

An almost biproduct complex manifold is a manifold endowed with an (abpc)structure.

It is easy to see that the conditions (2.1) are equivalent with the property that F and P are almost product (ap)-structures and J is an almost complex (ac)-structure on M, which satisfy the relations

$$(2.2) \quad F \circ P = -P \circ F = -J, \quad P \circ J = -J \circ P = F, \quad J \circ F = -F \circ J = P.$$

A structure (F, P, J) which satisfies the conditions (2.1) was called by different authors; almost quaternionic of the second kind, or almost antiquaternionic, or almost paraquaternionic structure. Considering the projectors F^{\pm} of F and P^{\pm} of P, given by

(2.3)
$$F^+ = \frac{I+F}{2}, \ F^- = \frac{I-F}{2}, \ P^+ = \frac{I+P}{2}, \ P^- = \frac{I-P}{2},$$

and the eigendistributions (subbundles) of TM

(2.4)
$$V_1 = F^+, V_2 = F^-; V_3 = P^+, V_4 = P^-,$$

one obtains $V_2 = P(V_1)$ and $V_4 = F(V_3)$. Hence, $\dim V_i = n$, i = 1, 2, 3, 4, $\dim M = 2n$ and Tr F = Tr P = 0. That is, F and P are almost paracomplex (apc)-structures on M, which anticommute.

Definition 2.2. A pair (F, P) of anticommuting almost product structures on a manifold M is called an almost biparacomplex structure.

From the considerations in the above it follows:

Proposition 2.1. If (F, P, J) is an (abpc)-structure on M, then (F, P) is an almost biparacomplex structure. Conversely if (F, P) is an almost biparacomplex structure on M, then $(F, P, J = F \circ P)$ is an (abpc)-structure.

Definition 2.3. A pair (F, J) formed by an (ap)-structure F and an (ac)-structure J, which anticommute, is called an almost product complex (apc)-structure on M.

One has

Proposition 2.2. If (F, P, J) is an (abpc)-structure on M, then the pairs (F, J) and (P, J) are (apc)-structures. Conversely if (F, J) is an (apc)-structure on M, then $(F, P = J \circ F, J)$ is an (abpc)-structure.

Definition 2.4. An almost tangent (at)-structure on M is an endomorphism A of TM, with the properties $A^2 = 0$, Ker A = Im A. An almost bitangent (abt)-structure on M is a pair (A, B) of (at)-structures so that $A \circ B + B \circ A = I$.

From (2.1) one obtains:

Proposition 2.3. If (F, P, J) is an (abpc)-structure on M then setting

(2.5)
$$A = \frac{1}{2}(F+J), \quad B = \frac{1}{2}(F-J); \quad C = \frac{1}{2}(P+J), \quad D = \frac{1}{2}(P-J),$$

 $\mathbf{3}$

the pairs (A, B) and (C, D) are (abt)-structures on M. Conversely, if (A, B) is an (abt)-structure on M, then setting

(2.6)
$$F = A + B, J = A - B, P = J \circ F,$$

the triplet (F, P, J) is an (abpc)-structure.

8

Definition 2.5. An α -structure on the manifold M is a triplet (V_1, V_2, V_3) of distributions on M, by twos supplementary.

Considering the eigendistributions V_i , i = 1, 2, 3, 4 associated to an (abpc)-structure, one obtains:

Proposition 2.4. If (F, P, J) is an (abpc)-structure on M and $V_1 = F^+, V_2 = F^-, V_3 = P^+, V_4 = P^-$ are the eigendistributions of F and P, then the triplets $(V_1, V_2, V_3), (V_2, V_3, V_4), (V_3, V_4, V_1), (V_4, V_1, V_2)$ are α -structures. Conversely, if (V_1, V_2, V_3) is an α -structure on M, then putting $F^+ = V_1, F^- = V_2, P^+ = V_3, P^- = F(V_4)$ the triplet $(F, P, J = P \circ F)$ is an (abpc)-structure.

Definition 2.6. A β -structure on M is a pair (H, W) where H is an (ap)-structure and W a distribution on M, so that $TM = W \oplus H(W)$. From (2.4) it results:

Proposition 2.5. If (F, P, J) is an (abpc)-structure on M, then the pairs $(F, P^+), (F, P^-), (P, F^+), (P, F^-)$ are β -structures. Conversely, if (F, W) is a β -structure on M, then setting $P^+ = W$ and $P^- = F(W)$, the triplet $(F, P, J = P \circ F)$ is an (abpc)-structure and one has

(2.7) $P(X+FY) = X - FY, \ J(X+FY) = Y - FX, \ X, Y \in \mathcal{T}^1(M, W).$

Definition 2.7. A γ -structure on M is a pair (H, W), where H is an (ac)-structure and W a distribution on M so that $TM = W \oplus JW$.

From (3.4) one obtains:

Proposition 2.6. If (F, P, J) is an (abpc)-structure on M, then the pairs $(J, F^+), (J, F^-), (J, P^+), (J, P^-)$ are γ -structures. Conversely, if (J, W) is a γ -structure on M, then setting

$$(2.8) \ F(X+JY) = X - JY, \ P(X+JY) = Y + JX, \ X, Y \in \mathcal{T}^{1}(M,W),$$

4

the triplet (F, P, J) is an (abpc)-structure.

5

Definition 2.8. A δ -structure on M is a pair (H, W), where H is an (at)-structure and W a distribution on M so that $TM = W \oplus HW$.

Proposition 2.7. If (F, P, J) is an (abpc)-structure on H, then the pairs $(\frac{F+J}{2}, P^+), (\frac{F-J}{2}, P^-), (\frac{P+J}{2}, F^+), (\frac{P-J}{2}, F^-)$ are δ -structures. Conversely, if (A, W) is a δ -structure on M, then setting

(2.9)
$$F(X + AY) = X - AY, \ P(X + AY) = Y + AX, J(X + AY) = -Y + AX, \ X, Y \in \mathcal{T}^{1}(M, W),$$

the triplet (F, P, J) is an (abpc)-structure.

Summarizing the previous considerations one obtains:

Theorem 2.1. An (apbc)-structure on a manifold is equivalent with each of the following structures: almost biparacomplex, almost product complex, almost bitangent, α, β, γ and δ .

Definition 2.9. An adapted local basis for the apbc-structure (F, P, J)on M is a local basis $(e_i, Pe_i), i = 1, 2, ..., n$, where (e_i) is a local basis on $V_1 = F^+$.

In such a basis the tensor fields F, P, J have the matrices

(2.10)
$$F = \begin{bmatrix} I_n & 0\\ 0 & -I_n \end{bmatrix}, P = \begin{bmatrix} 0 & I_n\\ I_n & 0 \end{bmatrix}, J = \begin{bmatrix} 0 & -I_n\\ I_n & 0 \end{bmatrix}$$

From here it follows:

Theorem 2.2. The structural group for the tangent bundle of a 2ndimensional manifold M, endowed with an (abpc)-structure, is reducible, to the diagonal subgroup of the direct product $GL(n, R) \times GL(n, R)$.

3. Metric and symplectic structures compatible with an (abpc)structure. Let h be a Riemannian metric on the (abpc)-manifold M and

(3.1)
$$g_1 = h \circ (I \times I + F \times F + P \times P + J \times J),$$
$$g_2 = g_1 \circ I \times F, \ g_3 = g_1 \circ I \times P, \ \omega = g_1 \circ I \times J$$

6

	0	F	Р	J
	g_1	$g_1 \circ F \times F = g_1$	$g_1 \circ P \times P = g_1$	$g_1 \circ J \times J = g_1$
		$g_1 \circ I \times F = g_2$	$g_1 \circ I \times P = g_3$	$g_1 \circ I \times J = \omega$
	g_2	$g_2 \circ F \times F = g_2$	$g_2 \circ P \times P = -g_2$	$g_2 \circ J \times J = -g_2$
(3.2)		$g_2 \circ I \times F = g_1$	$g_2 \circ I \times P = -\omega$	$g_2 \circ I \times J = -g_3$
	g_3	$g_3 \circ F \times F = -g_3$	$g_3 \times P \times P = g_3$	$g_3 \circ J \times J = -g_3$
		$g_3 \circ I \times F = \omega$	$g_3 \circ I \times P = g_1$	$g_3 \circ I \times J = g_2$
	ω	$\omega \circ F \times F = -\omega$	$\omega \circ P \times P = -\omega$	$\omega \circ J \times J = \omega$
		$\omega \circ I \times F = g_3$	$\omega \circ I \times P = -g_2$	$\omega \circ I \times J = -g_1$

From here and (2.1) it results the following table of compatibilities:

Taking into account (2.1), (3.1) and (3.2), one obtains that g_1 is a Riemannian metric, g_2, g_3 are neutral metrics and ω is an almost symplectic (as)-structure on M.

Definition 3.1. We call the quatriplet (F, P, J, g_1) , which satisfies the conditions (2.1), (3.1) and (3.2), a Riemannian metric almost biproduct complex (mabpc)-structure on M and g_2, g_3, ω the associated neutral metrics and almost symplectic structure.

From the previous considerations we can state the following result:

Theorem 3.1. A Riemannian (mabpc)-structure (F, P, J, g_1) determines on M:

- a) two Riemannian almost paracomplex structures (F, g_1) and (P, g_1) , with the associated neutral metrics g_2 and g_3 respectively,
- b) two neutral metric almost paracomplex structures (F, g_2) and (P, g_3) with the associated Riemannian metric g_1 ,
- c) two almost para-Hermitian structures (F, g_3) and (P, g_2) , with the associated almost symplectic 2-forms ω and $-\omega$ respectively,
- d an almost Hermitian structure (J, g_1) with the associated almost symplectic 2-form ω and
- e) two almost anti-Hermitian structures (J, g_2) and (J, g_3) with the associated neutral metrics $-g_3$ and g_2 respectively.

 $\mathbf{10}$

Setting $g = g_1/V_1 \times V_1$, one obtain from (3.1) and (3.2), for $X_{\alpha}, Y_{\alpha} \in \mathcal{T}^1(M, V_{\alpha}), \alpha = 1, 2,$, (3.3)

 $g_1(X_1, Y_1) = g(X_1, Y_1), \quad g_1(X_1, Y_2) = 0, \quad g_1(X_2, Y_2) = g(PX_2, PY_2), \\ g_2(X_1, Y_1) = g(X_1, Y_1), \quad g_2(X_1, Y_2) = 0, \quad g_2(X_2, Y_2) = -g(PX_2, PY_2), \\ g_3(X_1, Y_1) = 0, \quad g_3(X_1, Y_2) = g(X_1, PY_2), \quad g_3(X_2, Y_2) = 0, \\ \omega(X_1, Y_1) = 0, \quad \omega(X_1, Y_2) = -g(X_1, PY_2), \quad \omega(X_2, Y_2) = 0 \end{cases}$

and from here and Proposition 2.1 it results:

7

Proposition 3.1. A Riemannian (mabpc)-structure (F, P, J, g_1) on M is uniquely determined by an almost biparacomplex structure (F, P) and a Riemannian metric g on the distribution $V_1 = F^+$.

Definition 3.2. An adapted local basis to the Riemannian (mabpc)structure (F, P, J, g_1) is an adapted basis (e_i, Pe_i) to the (abpc)-structure (F, P, J), where (e_i) is an orthonormal basis on $V_1 = F^+$.

In such a basis, the matrices, associated to structures g_{α} , $\alpha = 1, 2, 3$ and ω , coincide with the matrices of I, F, P, J respectively. So one obtains

Theorem 3.2. The structural group, for the tangent bundle of a 2ndimensional manifold M, endowed with a Riemannian (mapbc)-structure, is reducible to the diagonal subgroup of the direct product $SO(n) \times SO(n)$.

4. Connections compatible with an (abpc)-structure

Definition 4.1. A linear connection ∇ on M is called compatible with the (abpc)-structure (F, P, J) or is a (F, P, J)-connection iff

(4.1)
$$\nabla F = \nabla P = \nabla J = 0$$

Let C(M) be the $\mathcal{F}(M)$ -affine module of connections on M. Setting for $\nabla \in C(M), \tau \in \mathcal{T}_2^1(M)$ and $X \in \mathcal{T}^1(M)$,

$$\psi_F(\nabla)_X = \frac{1}{2}(\nabla_X + F \circ \nabla_X \circ F), \ \chi_F(\tau)_X = \frac{1}{2}(\tau_X + F_0\tau_X \circ F),$$

$$(4.2) \quad \psi_P(\nabla)_X = \frac{1}{2}(\nabla_X + P \circ \nabla_X \circ P), \ \chi_P(\tau)_X = \frac{1}{2}(\tau_X + P \circ \tau_X \circ P),$$

$$\psi_J(\nabla)_X = \frac{1}{2}(\nabla_X - J \circ \nabla_X \circ J), \ \chi_J(\tau)_X = \frac{1}{2}(\tau_X - J \circ \tau_X \circ J),$$

we obtain as in [6,7], the following:

Proposition 4.1. The set $C_{FPJ}(M)$ of the connections on M, compatible with an (abpc)-structure (F, P, J), is given by

(4.3)
$$\nabla = \psi_F \circ \psi_P(\nabla^\circ) + \chi_F \circ \chi_P(\tau),$$

where $\nabla^0 \in C(M)$ is fixed and $\tau \in T_2^1(M)$ is arbitrary.

Taking here $\tau = 0$, it follows that an (abpc)-structure (F, P, J) associates to each connection $\nabla^0 \in C(M)$, a (F, P, J)-connection $\nabla = \psi_F \circ \psi_P(\nabla^\circ)$. This connection may be written in the form

(4.4)
$$\nabla_X = \frac{1}{4} \left(\nabla_X^0 + F \circ \nabla_X^\circ \circ F + P \circ \nabla_X^\circ \circ F - J \circ \nabla_X^0 \circ J \right), \ X \in \mathcal{T}^1(M),$$

i.e. ∇ is the mean connection of ∇^0 and its conjugate connections [6] with respect to F, P and J.

Definition 4.2. A connection ∇ is compatible with the structure $\alpha = (V_1, V_2, V_3)$ iff it preserves by parallelism the distributions $V_i, i = 1, 2, 3$.

Definition 4.3. A connection ∇ is compatible with one of the structures $\beta, \gamma, \delta = (H, W)$ iff it is a *H*-connection which preserves the distribution *W*. It is not difficult to prove

Proposition 4.2. A connection ∇ on M is compatible with the (abpc)structure (F, P, J) iff it satisfies one of the conditions:

- 1. The tensor fields from one of the pairs (F, P), (P, J), (J, F), (A, B) are covariant constant,
- 2. ∇ is compatible with one of the structure $\alpha, \beta, \gamma, \delta$.

Setting now, for a connection ∇ on M,

$${}^{i}\nabla_{X}Y = F_{i}(\nabla_{X}Y), \ i = 1, 2, \ {}^{i}\nabla_{X}Y = P_{i}(\nabla_{X}Y), \ i = 3, 4, \ X, Y \in \mathcal{T}^{1}(M),$$

one finds that the operators $\nabla, i = 1, 2, 3, 4$ are $\mathcal{F}(M)$ -linear in the first argument, *R*-linear in the second and satisfy

(4.6)
$$\begin{aligned} \overset{i}{\nabla}_{X}(fY) &= X(f)F_{i}(Y) + f\overset{i}{\nabla}_{X}Y, \ i = 1, 2, \\ \overset{i}{\nabla}_{X}(fY) &= X(f)P_{i}(Y) + f\overset{i}{\nabla}_{X}Y, \ i = 3, 4, \end{aligned}$$

12

for $f \in \mathcal{F}(M)$ and $X, Y \in \mathcal{T}^1(M)$. It results from here that $(\stackrel{i}{\nabla}, F_i)$, i = 1, 2and $(\stackrel{i}{\nabla}, P_i)$, i = 3, 4 are quasi-connections in the sense of Otsuki [12]. The restrictions of $\stackrel{i}{\nabla}$, with respect to the second argument, to $\mathcal{T}^1(M, V_i)$ give the connections induced by ∇ on the subbundles V_i [6]. When ∇ is compatible with the (abpc)-structure (F, P, J), the connections $\stackrel{i}{\nabla}$ coincide with the restrictions of ∇ , with respect to second argument, to $\mathcal{T}^1(M, V_i)$, i = 1, 2, 3, 4.

If ∇ is an arbitrary connection on M we can consider for the vector 1-forms F_i , i = 1, 2 and P_i , i = 3, 4, the exterior covariant derivatives with respect to ∇ given by

(4.7)
$$dF_i(X,Y) = \nabla_X(F_iY) - \nabla_Y(F_iX) - F_i[X,Y], \ i = 1,2$$
$$dP_i(X,Y) = \nabla_X(P_iY) - \nabla_Y(P_iX) - P_i[X,Y], \ i = 3,4.$$

It is naturally to call the *torsion* of the connection $\stackrel{i}{\nabla}$, induced by ∇ to V_i , the restriction $\stackrel{i}{T}$, of dF_i and dP_i to corresponding $\mathcal{T}^1(M, V_i) \times \mathcal{T}^1(M, V_i)$, i = 1, 2, 3, 4. So, we have

(4.8)
$$\overset{i}{T}(X_i, Y_i) = \begin{cases} \nabla_{X_i} Y_i - \nabla_{Y_i} X_i - F_i[X_i, Y_i], \ i = 1, 2\\ \nabla_{X_i} Y_i - \nabla_{Y_i} X_i - P_i[X_i, Y_i], \ i = 3, 4. \end{cases}$$

If ∇ is compatible with the (abpc)-structure (F, P, J), we get for $\overset{i}{T}$, as tensor fields on M, the expressions

(4.9)
$$\begin{aligned} \stackrel{i}{T} &= \begin{cases} F_i \circ T \circ F_i \times F_i, & i = 1, 2\\ P_i \circ T \circ P_i \times P_i, & i = 3, 4, \end{cases} \end{aligned}$$

where T is the torsion of ∇ .

In this case for the curvature of ∇ one obtains

$$(4.10) R_{XY} \circ F = F \circ R_{XY}, \ R_{XY} \circ P = P \circ R_{XY},$$

i.e. R_{XY} , as endomorphism of TM, preserves the distributions V_i , i = 1, 2, 3, 4.

From here it follows, for the curvatures $\overset{i}{R}$ of $\overset{i}{\nabla}$, considered as tensor fields on M,

i.e. the curvature of the induced connection $\stackrel{\circ}{\nabla}$ coincides with the restriction of the curvature R of ∇ to subbundle V_i , i = 1, 2, 3, 4.

We have also the following result:

Proposition 4.3. A connection ∇ on M, compatible with the (abpc)structure (F, P, J), is uniquely determined by its restriction $\stackrel{1}{\nabla}$ (respectively $\stackrel{2}{\nabla}$) with respect to second argument, to $\mathcal{T}^1(M, V_1)$ (respectively $\mathcal{T}^1(M, V_2)$) or by one of the pairs of partial connections $(\stackrel{1}{\nabla}_{X_1}, \stackrel{2}{\nabla}_{X_2}), (\stackrel{1}{\nabla}_{X_2}, \stackrel{2}{\nabla}_{X_1})$, with $X_i \in \mathcal{T}^1(M, V_i), i = 1, 2$.

Indeed setting, for $Y \in \mathcal{T}^1(M), Y = Y_1 + Y_2$ with $Y_i \in \mathcal{T}^1(M, V_i)$, i = 1, 2, from $\nabla F = 0$ it follows $\nabla_X Y = \stackrel{1}{\nabla}_X Y_1 + \stackrel{2}{\nabla}_X Y_2$. Then, from $\nabla P = 0$ one obtains $\stackrel{2}{\nabla}_X = P \circ \stackrel{1}{\nabla}_X \circ P$ and so

(4.12)
$$\nabla_X Y = \stackrel{1}{\nabla}_X Y_1 + (P \circ \stackrel{1}{\nabla}_X \circ P)(Y_2) = (P \circ \stackrel{2}{\nabla}_X \circ P)(Y_1) + \stackrel{2}{\nabla}_X Y_2.$$

Putting then $X = X_1 + X_2$, one has $\stackrel{i}{\nabla}_X = \stackrel{i}{\nabla}_{X_1} + \stackrel{i}{\nabla}_{X_2}$, i = 1, 2 and from $\stackrel{1}{\nabla}_X = P \circ \stackrel{2}{\nabla}_X \circ P$ it follows

(4.13)
$$\overset{1}{\nabla}_{X} = \overset{1}{\nabla}_{X_{1}} + P \circ \overset{2}{\nabla}_{X_{2}} \circ P = P \circ \overset{2}{\nabla}_{X_{1}} \circ P + \overset{1}{\nabla}_{X_{2}}.$$

From here, we obtain the following important result:

Theorem 4.1. On a manifold M endowed with an (abpc)-structure (F, P, J) there exists a unique connection ∇ , with torsion T, satisfying the conditions

(4.14)
$$\nabla F = \nabla P = 0, \quad T \circ F_1 \times F_2 = 0,$$

where F_1 and F_2 are the projectors of F.

Uniqueness. Let ∇ be a connection which satisfies (4.14). It results

$$T(X_1, X_2) = \stackrel{2}{\nabla}_{X_1} X_2 - \stackrel{1}{\nabla}_{X_2} X_1 - F_1[X_1, X_2] - F_2[X_1, X_2] = 0.$$

As V_1 and V_2 are supplementary, it follows from here,

$$\stackrel{1}{\nabla}_{X_2}X_1 = F_1[X_2, X_1], \quad \stackrel{2}{\nabla}_{X_1}X_2 = F_2[X_1, X_2], \quad \forall X_i \in \mathcal{T}^1(M, V_i), i = 1, 2.$$

But, from Proposition 4.3, ∇ being determined by $\stackrel{1}{\nabla}_{X_2}$ and $\stackrel{2}{\nabla}_{X_1}$, it is unique.

Existence. Setting for $X_i, Y_i \in \mathcal{T}^i(M, V_i), i = 1, 2$

(4.5)
$$\nabla_{X_1} Y_1 = F_1 \circ P[X_1, PY_1], \ \nabla_{X_1} X_2 = F_2[X_1, X_2], \\ \nabla_{X_2} X_1 = F_1[X_2, X_1], \ \nabla_{X_2} Y_2 = F_2 \circ P[X_2, PY_2],$$

and using the relations $F_1 \circ P = P \circ F_2$, $F_2 \circ P = P \circ F_1$, one obtains that ∇ is a connection on M which satisfies the conditions (4.14).

Changing the order of F and P (and so of (V_1, V_2) with (V_3, V_4)), we obtain another unique connection ∇' on M which satisfies the conditions

(4.16)
$$\nabla' F = \nabla' P = 0, \quad T' \circ P_3 \times P_4 = 0,$$

where T' is the torsion of ∇' .

Definition 4.4. The connections ∇ and ∇' , which satisfy the conditions (4.14) and (4.16) respectively, will be called the first and the second canonical connection associated to (abpc)-structure (F, P, J) on M.

From the analogous of (4.15) for ∇' one obtains:

Proposition 4.4. For an (abpc)-structure (F, P, J) on M, the second canonical connection ∇' may be expressed with the help of the first canonical connection ∇ by the relations:

(4.17)

$$\begin{aligned}
\nabla'_{X_3}X_4 &= \nabla_{X_3}X_4 - P_4(T(X_3, X_4)), \\
\nabla'_{X_4}X_3 &= \nabla_{X_4}X_3 - P_3(T(X_4, X_3)), \\
\nabla'_{X_3}Y_3 &= \nabla_{X_3}Y_3 - P_3 \circ F(T(X_3, FY_3)), \\
\nabla'_{X_4}Y_4 &= \nabla_{X_4}Y_4 - P_4 \circ F(T(X_4, FY_4)).
\end{aligned}$$

From here one obtains

Proposition 4.5. The first and second canonical connection ∇ and ∇' coincide iff one of the following conditions is satisfied

(4.18)
$$T \circ P_3 \times P_4 = 0; \ T' \circ F_1 \times F_2 = 0.$$

5. Involutivity and integrability. If (F, P, J) is an (abpc)-structure on M, for the Nijenhuis tensor fields of F and P, we obtain (4.19)

$$N_F(X_1, Y_1) = 4F_2[X_1, Y_1], N_F(X_1, Y_2) = 0, N_F(X_2, Y_2) = 4F_1[X_2, Y_2];$$

$$N_P(X_3, Y_3) = 4P_4[X_3, Y_3], N_P(X_3, Y_4) = 0, N_P(X_4, Y_4) = 4P_3[X_4, Y_4].$$

Then, if ∇ (respectively ∇') is a connection on M, compatible with F(respectively P) we get

(4.20)

$$N_F(X_1, Y_1) = -4F_2 \circ T(X_1, Y_1)), N_F(X_1, Y_2) = 0,$$

$$N_F(X_2, Y_2) = -4F_1 \circ T(X_2, Y_2);$$

$$N_P(X_3, Y_3) = -4P_4 \circ T'(X_3, Y_3), N_P(X_3, Y_4) = 0,$$

$$N_P(X_4, Y_4) = -P_4 \circ T'(X_4, Y_4).$$

. ___

From these formulas it follows:

Theorem 4.2. a) The eigendistribution V_i , i = 1, 2, 3, 4 is involutive iff it is satisfied respectively one of the following conditions for:

- V_1 : 1) $F_2[X_1, Y_1] = 0, 2) N_F(X_1, Y_1) = 0, 3) F_2 \circ N_F = 0,$ 4) $F_2 \circ T(X_1, Y_1) = 0.$
- V_2 : 1) $F_1[X_2, Y_2] = 0, 2) N_F(X_2, Y_2) = 0, 3) F_1 \circ N_F = 0,$ 4) $F_1 \circ T(X_2, Y_2) = 0$,
- V_3 : 1) $P_4[X_3, Y_3] = 0, 2) N_P(X_3, Y_3) = 0, 3) P_4 \circ N_P = 0,$ 4) $P_4 \circ T'(X_3, y_3) = 0$,
- V_4 : 1) $P_3[X_4, Y_4] = 0, 2) N_P(X_4, Y_4) = 0, 3) P_3 \circ N_P = 0,$ 4) $P_3 \circ T'(X_4, Y_4) = 0$,

 $\mathbf{16}$

13

where T (respectively T') is the torsion of a connection ∇ (respectively ∇ ') compatible with F (respectively P).

b) V_1 and V_2 are simultaneous involutive iff $N_F = 0$ or $T = \stackrel{1}{T} + \stackrel{2}{T}$, where T is the torsion of ∇ and $\stackrel{1}{T}, \stackrel{2}{T}$ the torsion of the induced connections on V_1 and V_2 respectively.

c) V_3 and V_4 are simultaneous involutive iff $N_P = 0$, or $T' = \overset{3}{T'} + \overset{4}{T'}$, where T' is the torsion of ∇' and T', T' the torsion of the induced connections on V_3 and V_4 respectively.

d) V_1, V_2 and V_3 are simultaneous involutive iff is satisfied one of the conditions a), b), c), for each of them.

e) V_1, V_2, V_3 and V_4 are simultaneous involutive iff one of the following conditions is satisfied

$$N_F = N_P = 0; \ T = 0; \ T' = 0,$$

where T and T' are the torsions of the first and second canonical connections.

Remark. The condition d) is very important because an (abpc)-structure (F, P, J), for which all the distributions V_1, V_2, V_3 are involutive, is equivalent with a 3-web on M [1.] So, the theory of 3-webs is subordinated to the theory of (abpc)-structures or to anyone of the structures that are equivalent with them.

Definition 4.5. An (abpc)-structure (F, P, J) is integrable iff there exists an atlas on M so that the associated natural local bases are adapted to the structure.

Concerning the integrability for an (abpc)-structure, from [16] one obtains:

Proposition 4.5. An (abpc)-structure (F, P, J) is integrable iff there exists on M a flat (F, P, J)-connection.

From here and the uniqueness of the canonical connection one obtains:

Theorem 4.3. The (abpc)-structure (F, P, J) is integrable if the first or the second canonical connections is flat.

17

Definition 4.6. A connection ∇ on M is compatible with the Riemannian (mabpc)-structure (F, P, J, g_1) or is a (F, P, J, g_1) -connection, iff it satisfies the conditions

(4.21)
$$\nabla F = \nabla P = \nabla g_1 = 0.$$

For such a connection one has also

 $\mathbf{18}$

(4.22)
$$\nabla J = \nabla g_2 = \nabla g_3 = \nabla \omega = 0, \ \nabla F_1 = \nabla F_2 = \nabla P_1 = \nabla P_2 = 0.$$

The following theorem holds

Theorem 4.4. Let (F, P, J, g_1) be a Riemannian (mabpc)-structure on M and $\overset{1}{g} = g_1/V_1 \times V_1, \overset{2}{g} = g_1/V_2 \times V_2$, the induced metrics on V_1 and V_2 . There exists an unique (F, P, J, g_1) -connection D on M, which satisfies the conditions:

(4.23)
$$D_X^{i} \stackrel{i}{g} = 0, \quad \stackrel{i}{T} = 0, \quad X \in \mathcal{T}^1(M, V_i), \quad i = 1, 2,$$

where $\overset{i}{D}$ is the connection on V_i induced by D and $\overset{i}{T}$ is its torsion.

Uniqueness. Indeed, from Proposition 4.3 it follows that a connection D, compatible with the (abpc)-structure (F, P, J), is uniquely determined by $D_X^1, X \in \mathcal{T}^1(M, N_1)$ and $D_X^2, X \in \mathcal{T}^1(M, V_2)$. But, from (4.23) one has

(4.24)
$$X_{g}^{i}(Y,Z) = \overset{i}{g}(\overset{i}{D_{X}}Y,Z) + \overset{i}{g}(Y,\overset{i}{D_{X}}Z),$$
$$\overset{i}{D_{X}}Y - \overset{i}{D_{Y}}X = F_{i}[X,Y], X, Y, Z \in \mathcal{T}^{1}(M,V_{i}), i = 1, 2.$$

By analogously computation with that used in the Riemannian case, [9] we obtain, for any $X, Y, Z \in \mathcal{T}^1(M, V_i), i = 1, 2,$ (4.25)

$$2g^{i}(D^{i}_{X}Y,Z) = Xg^{i}(Y,Z) + Yg^{i}(Z,X) - Zg^{i}(X,Y) - g^{i}(F_{i}[Y,Z],X) +g^{i}(F_{i}[Z,X],Y) + g^{i}(F_{i}[X,Y],Z).$$

As these formulas determine uniquely $D_X^i, X \in \mathcal{T}^i(M, V_i), i = 1, 2$, the uniqueness of D is proved.

Existence. Let $D_X^i, X \in \mathcal{T}^1(M, V_i)$, i = 1, 2, be given by (4.25). From Proposition 4.3, it results that these partial connections determine a connection D on M, compatible with the (abpc)-structure (F, P, J) and by a simple computation we find that D satisfies also the conditions (4.23) and that $Dg_1 = 0$.

Definition 4.7. The unique connection D, given by the Theorem 4.4, will be called the first natural connection associated to Riemannian (mabpc)-structure (F, P, J, g_1) .

Remark. The first natural connection *D* satisfies also the condition:

(4.26)
$$\mathring{D}g^{i} = 0, \quad Dg_{i} = 0, \quad i = 1, 2; \quad D\omega = 0.$$

÷

Changing in Theorem 4.4 F with P and (V_1, V_2) with (V_3, V_4) one obtains another connection D' compatible with the Riemannian (mabpc)-structure (F, P, J, g_1) , called the second natural connection.

From here it follows:

Proposition 4.6. The first natural connection D coincides with the Levi-Civita connection for one of the metrique g_i , i = 1, 2, 3 (and so for all) iff it is torsionless.

In this case D coincides also with the second natural connection D' and with the first and second canonical connection ∇ and ∇' . Also in this case the structures F, P, J, ω are integrable and the distributions $V_i, i = 1, 2, 3, 4$ are involutive. Hence we have:

Theorem 4.8. If the first natural connection D for the Riemannian (mabpc)-structure (F, P, J, g_1) is torsionless, then one obtains on M:

- a) two Riemannian local decomposable structures (F, g_1) and (P, g_1) , with the associated neutral metrics g_2 and g_3 respectively,
- b) two neutral local decomposable structures (F, g_2) and (P, g_3) , with the associated Riemannian metric g_1 ,
- c) two para-Kähler structures (F, g_3) and (P, g_2) with the associated symplectic 2-forms ω and $-\omega$, respectively,
- d) a Kähler structure (J, g_1) with the associated symplectic 2-form ω and

e) two anti-Kähler structures (J, g_2) and (J, g_3) with the associated neutral metrics $-g_3$ and g_2 , respectively.

5. Example. Let N be a paracompact and connected manifold, M = TN the total space of the tangent bundle $\pi : TN \to N$ and $VTN = Ker T\pi$, the vertical subbundle of TN. Denote by (x^i) the local coordinates and by (∂_i) , (d^i) , where $\partial_i = \frac{\partial}{\partial x^i}$, $d^i = dx^i$, the associated local dual bases on N. Setting for each 1-form $\alpha \in T_1(N)$, given locally by $\alpha(x) = \alpha_i(x)d^i$, $\gamma\alpha(z) = \alpha_i(x)y^i$, where $z = (x, y) \in T_xN$, we obtain a class of functions on TN, with the property that each vector field $A \in T^1(TN)$ is uniquely determined by its values on these functions. We extend γ to tensor fields $S \in T_1^1(TN)$ by putting $\gamma S(\gamma \alpha) = \gamma(\alpha \circ S), \forall \alpha \in T_1(N)$. Let be then ∇ a connection on N and $X \in T^1(N)$. Setting

(5.1)
$$X^{h}(\gamma \alpha) = \gamma(\nabla_{X} \alpha), \ X^{v}(\gamma \alpha) = \alpha(X) \circ \pi, \ \forall \alpha \in \mathcal{T}_{1}(N),$$

we obtain two vector fields on TN, called respectively, the horizontal and the vertical lift of X. Putting then, for each $f \in \mathcal{F}(N)$, $f^h = f^v = f \circ \pi$, one obtains the following useful formulas

(5.2)
$$(fX)^h = f^h X^h, \ (fX)^v = f^v X^v, [X^h, Y^h] = [X, Y]^h - \gamma R_{XY}, \ [X^h, Y^v] = (\nabla_X Y)^v, \ [X^v, Y^v] = 0,$$

where $X, Y \in \mathcal{T}^1(N)$ and R is the curvature of ∇ .

Considering then the tensor fields F, PJ given by

(5.3)
$$F(X^{h}) = X^{h}, \ F(X^{v}) = -X^{v}, \ P(X^{h}) = X^{v}, P(X^{v}) = X^{h},$$
$$J(X^{h}) = X^{v}, \ J(X^{v}) = -X^{h},$$

for each $X \in \mathcal{T}^1(N)$ it comes out that they satisfy (2.1) and so we have:

Proposition 5.1. Given a connection ∇ on N, the tensor fields F, P, J defined by (5.3) determine an (abpc)-structure on the total space TN.

The eigendistributions V_i , i = 1, 2, 3, 4 associated to F and P are generated respectively by $X^h, X^v, X^h + X^v, X^h - X^v, \forall X \in \mathcal{T}^1(N)$. For the first canonical connection, of the (abpc)-structure (F, P, J), on TN, denoted by D, we obtain from (4.15) and (5.3)

(5.4)
$$D_{X^h}Y^h = (\nabla_X Y)^h, \ D_{X^h}Y^v = (\nabla_X Y)^v,$$
$$D_{X^v}Y^h = D_{X^v}Y^v = 0, X, Y \in \mathcal{T}^1(N)$$

 $\mathbf{20}$

and so it follows:

17

Proposition 5.2. The first canonical connection of the (abpc)-structure (F, P, J) on TN, given by (5.3), associated to connection ∇ on N, coincides with the diagonal lift of ∇ , see [5].

Going further, for nonvanishing components of the torsion and curvature of D, one obtains

(5.5)
$$\begin{aligned} \mathcal{T}(X^h, Y^h) &= T(X, Y)^h + \gamma R_{XY}, \mathcal{R}_{X^h Y^h} Z^h = (R_{XY} Z)^h, \\ \mathcal{R}_{X^h Y^h} Z^v &= (R_{XY} Z)^v, \end{aligned}$$

where T and R are the torsion and curvature of ∇ .

From (5.5) and Proposition 4.5 it results:

Proposition 5.3. The (abpc)-structure (F, P, J) on TN, associated by (5.3) to connection ∇ on N, is integrable iff ∇ is a flat connection.

Let be now g a Riemannian metric on N, ∇^g the Levi-Civita connection of g and (F, P, J) the (abpc)-structure on TN associated to ∇^g . We consider the (0, 2)-tensor fields g^h, g^v, g^{vh} and g^{hv} on TN given, for each $X, Y \in \mathcal{T}^1(N)$, by:

$$g^{h}(X^{h}, Y^{h}) = g(X, Y) \circ \pi,$$

$$g^{h}(X^{h}, Y^{v}) = g^{h}(X^{v}, Y^{h}) = g^{h}(X^{v}, Y^{v}) = 0,$$

$$g^{v}(X^{h}, Y^{h}) = g^{v}(X^{h}, Y^{v}) = g^{v}(X^{v}, Y^{h}) = 0,$$

$$g^{v}(X^{v}, Y^{v}) = g(X, Y) \circ \pi,$$

$$g^{vh}(X^{h}, Y^{h}) = g^{vh}(X^{h}, Y^{v}) = g^{vh}(X^{v}, Y^{v}) = 0,$$

$$g^{vh}(X^{v}, Y^{h}) = g(X, Y) \circ \pi,$$

$$g^{hv}(X^{h}, Y^{h}) = g^{hv}(X^{v}, Y^{h}) = g^{hv}(X^{v}, Y^{v}) = 0,$$

$$g^{hv}(X^{h}, Y^{v}) = g(X, Y) \circ \pi.$$

Setting then

$$(5.7) g_1 = g^h + g^v,$$

we obtain a Riemannian metric on TN, called the Sasaki metric associated to g which satisfies the conditions

(5.8)
$$g_1 \circ F \times F = g_1 \circ P \times P = g_1 \circ J \times J = g_1.$$

From here one obtains:

Proposition 5.4. A Riemannian metric g on N determines by (5.3), (5.6) and (5.7) a Riemannian (mapbc)-structure (F, P, J, g_1) on TN, with the associated metrics g_2, g_3 and 2-form ω , given by

(5.9)
$$g_2 = g^h - g^v, \ g_3 = g^{vh} + g^{hv}, \ \omega = g^{vh} - g^{hv}.$$

Denoting by \mathcal{D} the first natural connection associated to Riemannian (mabpc)-structure (F, P, J, g_1) , given by (5.3) and (5.7), we obtain from (4.25) and Proposition 4.3,

(5.10)
$$\mathcal{D}_{X^h}Y^h = (\nabla^g_X Y)^h, \ \mathcal{D}_{X^h}Y^v = (\nabla^g_X Y)^v, \ \mathcal{D}_{X^v}Y^h = \mathcal{D}_{X^v}Y^v = 0.$$

Hence, we have:

Proposition 5.5. The first natural connection of the Riemannian (mapbc)-structure (F, P, J, g_1) on TN, associated to Riemannian metric g on N, coincide with the diagonal lift for the Levi-Civita connection of the metric g.

Remark. For a Riemannian metric g on N and its Levi-Civita connection ∇^g , the first natural connection, associated to Riemannian (mabpc)-structure (F, P, J, g_1) coincides with the first canonical connection, associated to (abpc)-structure (F, P, J) on TN, determined by g.

The nonvanishing components for the first natural connection ${\mathcal D}$ are given by

(5.6)

$$\mathcal{T}(X^h, Y^h) = \gamma R^g_{XY}, \mathcal{R}_{X^hY^h} Z^h = (R^g_{XY} Z)^h, \ \mathcal{R}_{X^hY^h} Z^v = (R^g_{XY} Z)^v,$$

where R^g is the curvature of ∇^g . From here it follows:

Proposition 5.6. The torsion and the curvature for the first natural connection \mathcal{D} are simultaneously zero, namely iff the curvature of the Levi-Civita connection ∇^g of g is zero.

REFERENCES

- 1. AKIVIS, M.A.; GOLDBERG, V.V. *Differential Geometry of Webs*, Editor F.J.E. Handbook of Differential Geometry, v.I, Amsterdam, North-Holland, 1-52, 2000.
- BONOME, A.; CASTRO, R., GARCIA-RIO, E.; HERVELLA, L.M.; MATSUSHITA, Y. Almost complex manifolds with holomorphic distributions, Rendiconti di matematica, Seria VII, volume 14, Roma (1999), 567-589.
- CRUCEANU, V. Une classe de structures geometriques sur le fibré cotangent, Tensor N.S. 53(1993), 192-201
- CRUCEANU, V.; FORTUNY, P. AND GADEA, P. A Survey in Paracomplex Geometry, Rocky Mountain J. Math. v. 26, n.1 (1996), 83-115
- CRUCEANU, V. On certain Lifts in the tangent Bundle, An.St. Univ. "Al.I. Cuza", Iaşi, tom XLVI, s.I-a, Mat. 46(2000), f.1, 57-72
- CRUCEANU, V. Almost Hyperproduct structures on Manifolds, An.St. Univ. "Al.I. Cuza", Iaşi, s.I-a, Mat. 2002, f.2, 337-354.
- CRUCEANU, V. Almost Product Bicomplex Structures on Manifolds, An.St. Univ. "Al.I. Cuza", Iaşi, tom XLIX, s.I-a, Mat. 2005, f.1, 99-118
- HSU, C.J. On some structures which are similar to quaternion structures, Tohoku Math. J. v.12 (1960), 403-428.
- KOBAYASHI, S.; NOMIZU, K. Foundations of Differential Geometry, v.I, II, Interscience, New York, 1963, 1969.
- LIBERMAN, P. Sur le probleme d'equivalence de certaines structures infinitesimales, Ann. Mat. Pure Appl. 4(36), 1954, 27-120.
- MAKSYM, A.; ZMUREK, A. Manifold with the 3-structure, Ann. Univ. Marie-Curie-Skladowska, v.XLI(1987), 51-63.
- OTSUKI, T. On general Connections I, II, Math. J. Okayama Univ. 9(1960), 99-164, 10(1961), 113-124.
- 13. SALAMON, S. Quaternionic Kähler Manifolds, Inv. Math. 67(1986), 143-171.
- SANTAMARIA, S.R. Examples of Manifolds with three supplementary distributions, Atti. Sem. Mat. Fis. Moderna, XLVII(1999), 419-428.
- 15. SANTAMARIA, S.R. Invariantes diferenciales de las estructuras casi-biparacomplejas y el problema de equivalencia, Thesis Universidad de Cantabria, Spain, 2002.
- VIDAL, E.; VIDAL COSTA, E. Special Connections and Almost Foliated Metrics, J. Diff. Geom. 8(1973), 297-304.

17. YANO, K.; AKO, M. – Almost quaternionic structures of the second kind and almost tangent structures, Kodai Math. Sem. Rep. 39(1973), 63-94.

Received: 21.XI.2005

Faculty of Mathematics, University "Al.I. Cuza", Iaşi 700 506, ROMÂNIA