ON ALMOST BIPRODUCT COMPLEX MANIFOLDS*

BY

V. CRUCEANU

Abstract

One defines the almost biproduct complex (abpc) structure and one analyzes its equivalence with other structures on a manifold. One studies then the metrics and connections compatible with such a structure, the involutivity of the associated distributions and the integrability of these structures. An example of a metric (abpc)-structure on the tangent bundle of a Riemannian manifold is also given.

Mathematics Subject Classification 2000: 53C07, C15, C55. Key words: Almost biproduct complex structures, compatible metrics and connections, involutivity and integrability.

1. Introduction. Let F and P be two $(1,1)$-tensor fields on a manifold M so that the endomorphisms defined by these are: both almost product, or one almost product and other almost complex, or both almost complex, which commute or anticommute. With the triplet $(F, P, J=P \circ F)$ we can form the following four structures:
1) $F^{2}=P^{2}=J^{2}=F \circ P \circ J=I$,
2) $F^{2}=P^{2}=-J^{2}=F \circ P \circ J=I$,
3) $-F^{2}=P^{2}=J^{2}=F \circ P \circ J=-I$,
4) $F^{2}=P^{2}=J^{2}=F \circ P \circ J=-I$,
called respectively: almost hyperproduct (ahp), almost biproduct complex (abpc), almost product bicomplex (apbc) and almost hypercomplex (ahc).
[^0]Along the time all these structures, with different others denominations, were considered, together or separately, by: Liberman [10], Cruceanu [3,6,7], Bonome, Castro, Garcia-Rio, Hervella and Matsushita [2], Hsu [8], Macsym and Zmurek [11], Salamon [13], Santamaria [14,15] Vidal and Vidal Costa [16], Yano and Ako [17] and many others.

Continuing the recent studies for two of these structures [6,7], in this paper, we consider the (abpc)-structures. Firstly, we give a new definition for an (abpc)-structure and we analyze its equivalence with many other important structures on a manifold. We study then, metrics, symplectic structures and linear connections compatible with such a structure, the involutivity of the associated distributions and the integrability of the (abpc)structures, using some canonical compatible connections. An example of a metric (abpc)-structure on the total space of the tangent bundle of a Riemannian manifold is also given.
2. Almost biproduct complex structures and equivalent structures. Let M be a paracompact and connected manifold, $\mathcal{F}(M)$ the ring of real functions, $\mathcal{T}_{q}^{p}(M)$ the $\mathcal{F}(M)$-module of (p, q)-tensor fields and $\mathcal{T}(M)$ the $\mathcal{F}(M)$-tensor algebra of M, all in the category of C^{∞}-manifolds. For a distribution W on M we denote by $\mathcal{T}^{1}(M, W)$, the $\mathcal{F}(M)$-module of C^{∞} sections in the subbundle W.

Definition 2.1. An almost biproduct complex (abpc)-structure on the manifold M is a triplet (F, P, J) of $(1,1)$-tensor fields which satisfy

$$
\begin{equation*}
F^{2}=P^{2}=-J^{2}=F \circ P \circ J=I \tag{2.1}
\end{equation*}
$$

An almost biproduct complex manifold is a manifold endowed with an (abpc)structure.

It is easy to see that the conditions (2.1) are equivalent with the property that F and P are almost product (ap)-structures and J is an almost complex (ac)-structure on M, which satisfy the relations

$$
\begin{equation*}
F \circ P=-P \circ F=-J, \quad P \circ J=-J \circ P=F, \quad J \circ F=-F \circ J=P . \tag{2.2}
\end{equation*}
$$

A structure (F, P, J) which satisfies the conditions (2.1) was called by different authors; almost quaternionic of the second kind, or almost antiquaternionic, or almost paraquaternionic structure.

Considering the projectors $F^{ \pm}$of F and $P^{ \pm}$of P, given by

$$
\begin{equation*}
F^{+}=\frac{I+F}{2}, \quad F^{-}=\frac{I-F}{2}, \quad P^{+}=\frac{I+P}{2}, \quad P^{-}=\frac{I-P}{2} \tag{2.3}
\end{equation*}
$$

and the eigendistributions (subbundles) of $T M$

$$
\begin{equation*}
V_{1}=F^{+}, \quad V_{2}=F^{-} ; \quad V_{3}=P^{+}, \quad V_{4}=P^{-} \tag{2.4}
\end{equation*}
$$

one obtains $V_{2}=P\left(V_{1}\right)$ and $V_{4}=F\left(V_{3}\right)$. Hence, $\operatorname{dim} V_{i}=n, i=1,2,3,4$, $\operatorname{dim} M=2 n$ and $\operatorname{Tr} F=\operatorname{Tr} P=0$. That is, F and P are almost paracomplex (apc)-structures on M, which anticommute.

Definition 2.2. A pair (F, P) of anticommuting almost product structures on a manifold M is called an almost biparacomplex structure.

From the considerations in the above it follows:

Proposition 2.1. If (F, P, J) is an (abpc)-structure on M, then (F, P) is an almost biparacomplex structure. Conversely if (F, P) is an almost biparacomplex structure on M, then $(F, P, J=F \circ P)$ is an (abpc)-structure.

Definition 2.3. A pair (F, J) formed by an (ap)-structure F and an (ac)-structure J, which anticommute, is called an almost product complex (apc)-structure on M.

One has

Proposition 2.2. If (F, P, J) is an (abpc)-structure on M, then the pairs (F, J) and (P, J) are $($ apc $)$-structures. Conversely if (F, J) is an (apc)structure on M, then $(F, P=J \circ F, J)$ is an (abpc)-structure.

Definition 2.4. An almost tangent (at)-structure on M is an endomorphism A of $T M$, with the properties $A^{2}=0, \operatorname{Ker} A=\operatorname{Im} A$. An almost bitangent (abt)-structure on M is a pair (A, B) of $($ at $)$-structures so that $A \circ B+B \circ A=I$.

From (2.1) one obtains:
Proposition 2.3. If (F, P, J) is an (abpc)-structure on M then setting

$$
\begin{equation*}
A=\frac{1}{2}(F+J), \quad B=\frac{1}{2}(F-J) ; \quad C=\frac{1}{2}(P+J), \quad D=\frac{1}{2}(P-J) \tag{2.5}
\end{equation*}
$$

the pairs (A, B) and (C, D) are $(a b t)$-structures on M. Conversely, if (A, B) is an (abt)-structure on M, then setting

$$
\begin{equation*}
F=A+B, \quad J=A-B, \quad P=J \circ F \tag{2.6}
\end{equation*}
$$

the triplet (F, P, J) is an (abpc)-structure.
Definition 2.5. An α-structure on the manifold M is a triplet $\left(V_{1}, V_{2}, V_{3}\right)$ of distributions on M, by twos supplementary.

Considering the eigendistributions $V_{i}, i=1,2,3,4$ associated to an (abpc)structure, one obtains:

Proposition 2.4. If (F, P, J) is an (abpc)-structure on M and $V_{1}=$ $F^{+}, V_{2}=F^{-}, V_{3}=P^{+}, V_{4}=P^{-}$are the eigendistributions of F and P, then the triplets $\left(V_{1}, V_{2}, V_{3}\right),\left(V_{2}, V_{3}, V_{4}\right),\left(V_{3}, V_{4}, V_{1}\right),\left(V_{4}, V_{1}, V_{2}\right)$ are α structures. Conversely, if $\left(V_{1}, V_{2}, V_{3}\right)$ is an α-structure on M, then putting $F^{+}=V_{1}, F^{-}=V_{2}, P^{+}=V_{3}, P^{-}=F\left(V_{4}\right)$ the triplet $(F, P, J=P \circ F)$ is an (abpc)-structure.

Definition 2.6. A-structure on M is a pair (H, W) where H is an (ap)-structure and W a distribution on M, so that $T M=W \oplus H(W)$.

From (2.4) it results:
Proposition 2.5. If (F, P, J) is an (abpc)-structure on M, then the pairs $\left(F, P^{+}\right),\left(F, P^{-}\right),\left(P, F^{+}\right),\left(P, F^{-}\right)$are β-structures. Conversely, if (F, W) is a β-structure on M, then setting $P^{+}=W$ and $P^{-}=F(W)$, the triplet $(F, P, J=P \circ F)$ is an (abpc)-structure and one has
(2.7) $P(X+F Y)=X-F Y, J(X+F Y)=Y-F X, \quad X, Y \in \mathcal{T}^{1}(M, W)$.

Definition 2.7. A γ-structure on M is a pair (H, W), where H is an (ac)-structure and W a distribution on M so that $T M=W \oplus J W$.

From (3.4) one obtains:
Proposition 2.6. If (F, P, J) is an (abpc)-structure on M, then the pairs $\left(J, F^{+}\right),\left(J, F^{-}\right),\left(J, P^{+}\right),\left(J, P^{-}\right)$are γ-structures. Conversely, if (J, W) is a γ-structure on M, then setting

$$
\begin{equation*}
F(X+J Y)=X-J Y, \quad P(X+J Y)=Y+J X, \quad X, Y \in \mathcal{T}^{1}(M, W) \tag{2.8}
\end{equation*}
$$

the triplet (F, P, J) is an (abpc)-structure.
Definition 2.8. $A \delta$-structure on M is a pair (H, W), where H is an (at)-structure and W a distribution on M so that $T M=W \oplus H W$.

Proposition 2.7. If (F, P, J) is an (abpc)-structure on H, then the pairs $\left(\frac{F+J}{2}, P^{+}\right),\left(\frac{F-J}{2}, P^{-}\right),\left(\frac{P+J}{2}, F^{+}\right),\left(\frac{P-J}{2}, F^{-}\right)$are δ-structures. Conversely, if (A, W) is a δ-structure on M, then setting

$$
\begin{align*}
& F(X+A Y)=X-A Y, P(X+A Y)=Y+A X \tag{2.9}\\
& J(X+A Y)=-Y+A X, X, Y \in \mathcal{T}^{1}(M, W)
\end{align*}
$$

the triplet (F, P, J) is an (abpc)-structure.
Summarizing the previous considerations one obtains:
Theorem 2.1. An (apbc)-structure on a manifold is equivalent with each of the following structures: almost biparacomplex, almost product complex, almost bitangent, α, β, γ and δ.

Definition 2.9. An adapted local basis for the apbc-structure (F, P, J) on M is a local basis $\left(e_{i}, P e_{i}\right), i=1,2, \ldots, n$, where $\left(e_{i}\right)$ is a local basis on $V_{1}=F^{+}$.

In such a basis the tensor fields F, P, J have the matrices

$$
F=\left[\begin{array}{cc}
I_{n} & 0 \tag{2.10}\\
0 & -I_{n}
\end{array}\right], \quad P=\left[\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right]
$$

From here it follows:

Theorem 2.2. The structural group for the tangent bundle of a $2 n-$ dimensional manifold M, endowed with an (abpc)-structure, is reducible, to the diagonal subgroup of the direct product $G L(n, R) \times G L(n, R)$.
3. Metric and symplectic structures compatible with an (abpc)structure. Let h be a Riemannian metric on the (abpc)-manifold M and

$$
\begin{align*}
& g_{1}=h \circ(I \times I+F \times F+P \times P+J \times J), \\
& g_{2}=g_{1} \circ I \times F, g_{3}=g_{1} \circ I \times P, \omega=g_{1} \circ I \times J . \tag{3.1}
\end{align*}
$$

From here and (2.1) it results the following table of compatibilities:

\circ	F	P	J
g_{1}	$g_{1} \circ F \times F=g_{1}$	$g_{1} \circ P \times P=g_{1}$	$g_{1} \circ J \times J=g_{1}$
	$g_{1} \circ I \times F=g_{2}$	$g_{1} \circ I \times P=g_{3}$	$g_{1} \circ I \times J=\omega$
g_{2}	$g_{2} \circ F \times F=g_{2}$	$g_{2} \circ P \times P=-g_{2}$	$g_{2} \circ J \times J=-g_{2}$
	$g_{2} \circ I \times F=g_{1}$	$g_{2} \circ I \times P=-\omega$	$g_{2} \circ I \times J=-g_{3}$
g_{3}	$g_{3} \circ F \times F=-g_{3}$	$g_{3} \times P \times P=g_{3}$	$g_{3} \circ J \times J=-g_{3}$
	$g_{3} \circ I \times F=\omega$	$g_{3} \circ I \times P=g_{1}$	$g_{3} \circ I \times J=g_{2}$
ω	$\omega \circ F \times F=-\omega$	$\omega \circ P \times P=-\omega$	$\omega \circ J \times J=\omega$
	$\omega \circ I \times F=g_{3}$	$\omega \circ I \times P=-g_{2}$	$\omega \circ I \times J=-g_{1}$

Taking into account (2.1), (3.1) and (3.2), one obtains that g_{1} is a Riemannian metric, g_{2}, g_{3} are neutral metrics and ω is an almost symplectic (as)-structure on M.

Definition 3.1. We call the quatriplet (F, P, J, g_{1}), which satisfies the conditions (2.1), (3.1) and (3.2), a Riemannian metric almost biproduct complex (mabpc)-structure on M and g_{2}, g_{3}, ω the associated neutral metrics and almost symplectic structure.

From the previous considerations we can state the following result:
Theorem 3.1. A Riemannian (mabpc)-structure (F, P, J, g_{1}) determines on M :
a) two Riemannian almost paracomplex structures $\left(F, g_{1}\right)$ and $\left(P, g_{1}\right)$, with the associated neutral metrics g_{2} and g_{3} respectively,
b) two neutral metric almost paracomplex structures $\left(F, g_{2}\right)$ and $\left(P, g_{3}\right)$ with the associated Riemannian metric g_{1},
c) two almost para-Hermitian structures $\left(F, g_{3}\right)$ and $\left(P, g_{2}\right)$, with the associated almost symplectic 2 -forms ω and $-\omega$ respectively,
d an almost Hermitian structure (J, g_{1}) with the associated almost symplectic 2-form ω and
e) two almost anti-Hermitian structures $\left(J, g_{2}\right)$ and $\left(J, g_{3}\right)$ with the associated neutral metrics $-g_{3}$ and g_{2} respectively.

Setting $g=g_{1} / V_{1} \times V_{1}$, one obtain from (3.1) and (3.2), for $X_{\alpha}, Y_{\alpha} \in$ $\mathcal{T}^{1}\left(M, V_{\alpha}\right), \alpha=1,2$,

$$
\begin{align*}
& g_{1}\left(X_{1}, Y_{1}\right)=g\left(X_{1}, Y_{1}\right), g_{1}\left(X_{1}, Y_{2}\right)=0, g_{1}\left(X_{2}, Y_{2}\right)=g\left(P X_{2}, P Y_{2}\right), \tag{3.3}\\
& g_{2}\left(X_{1}, Y_{1}\right)=g\left(X_{1}, Y_{1}\right), g_{2}\left(X_{1}, Y_{2}\right)=0, g_{2}\left(X_{2}, Y_{2}\right)=-g\left(P X_{2}, P Y_{2}\right), \\
& g_{3}\left(X_{1}, Y_{1}\right)=0, g_{3}\left(X_{1}, Y_{2}\right)=g\left(X_{1}, P Y_{2}\right), g_{3}\left(X_{2}, Y_{2}\right)=0 \\
& \omega\left(X_{1}, Y_{1}\right)=0, \omega\left(X_{1}, Y_{2}\right)=-g\left(X_{1}, P Y_{2}\right), \omega\left(X_{2}, Y_{2}\right)=0
\end{align*}
$$

and from here and Proposition 2.1 it results:
Proposition 3.1. A Riemannian (mabpc)-structure (F, P, J, g_{1}) on M is uniquely determined by an almost biparacomplex structure (F, P) and a Riemannian metric g on the distribution $V_{1}=F^{+}$.

Definition 3.2. An adapted local basis to the Riemannian (mabpc)structure $\left(F, P, J, g_{1}\right)$ is an adapted basis $\left(e_{i}, P e_{i}\right)$ to the (abpc)-structure (F, P, J), where $\left(e_{i}\right)$ is an orthonormal basis on $V_{1}=F^{+}$.

In such a basis, the matrices, associated to structures $g_{\alpha}, \alpha=1,2,3$ and ω, coincide with the matrices of I, F, P, J respectively. So one obtains

Theorem 3.2. The structural group, for the tangent bundle of a $2 n$ dimensional manifold M, endowed with a Riemannian (mapbc)-structure, is reducible to the diagonal subgroup of the direct product $S O(n) \times S O(n)$.

4. Connections compatible with an (abpc)-structure

Definition 4.1. A linear connection ∇ on M is called compatible with the (abpc)-structure (F, P, J) or is a (F, P, J)-connection iff

$$
\begin{equation*}
\nabla F=\nabla P=\nabla J=0 \tag{4.1}
\end{equation*}
$$

Let $C(M)$ be the $\mathcal{F}(M)$-affine module of connections on M. Setting for $\nabla \in C(M), \tau \in \mathcal{T}_{2}^{1}(M)$ and $X \in \mathcal{T}^{1}(M)$,

$$
\begin{align*}
\psi_{F}(\nabla)_{X} & =\frac{1}{2}\left(\nabla_{X}+F \circ \nabla_{X} \circ F\right), \chi_{F}(\tau)_{X}=\frac{1}{2}\left(\tau_{X}+F_{0} \tau_{X} \circ F\right), \\
\psi_{P}(\nabla)_{X} & =\frac{1}{2}\left(\nabla_{X}+P \circ \nabla_{X} \circ P\right), \chi_{P}(\tau)_{X}=\frac{1}{2}\left(\tau_{X}+P \circ \tau_{X} \circ P\right), \tag{4.2}\\
\psi_{J}(\nabla)_{X} & =\frac{1}{2}\left(\nabla_{X}-J \circ \nabla_{X} \circ J\right), \chi_{J}(\tau)_{X}=\frac{1}{2}\left(\tau_{X}-J \circ \tau_{X} \circ J\right),
\end{align*}
$$

we obtain as in $[6,7]$, the following:
Proposition 4.1. The set $C_{F P J}(M)$ of the connections on M, compatible with an (abpc)-structure (F, P, J), is given by

$$
\begin{equation*}
\nabla=\psi_{F} \circ \psi_{P}\left(\nabla^{\circ}\right)+\chi_{F} \circ \chi_{P}(\tau) \tag{4.3}
\end{equation*}
$$

where $\nabla^{0} \in C(M)$ is fixed and $\tau \in \mathcal{T}_{2}^{1}(M)$ is arbitrary.
Taking here $\tau=0$, it follows that an (abpc)-structure (F, P, J) associates to each connection $\nabla^{0} \in C(M)$, a (F, P, J)-connection $\nabla=\psi_{F} \circ$ $\psi_{P}\left(\nabla^{\circ}\right)$. This connection may be written in the form

$$
\begin{equation*}
\nabla_{X}=\frac{1}{4}\left(\nabla_{X}^{0}+F \circ \nabla_{X}^{\circ} \circ F+P \circ \nabla_{X}^{\circ} \circ F-J \circ \nabla_{X}^{0} \circ J\right), X \in \mathcal{T}^{1}(M), \tag{4.4}
\end{equation*}
$$

i.e. ∇ is the mean connection of ∇^{0} and its conjugate connections [6] with respect to F, P and J.

Definition 4.2. A connection ∇ is compatible with the structure $\alpha=$ $\left(V_{1}, V_{2}, V_{3}\right)$ iff it preserves by parallelism the distributions $V_{i}, i=1,2,3$.

Definition 4.3. A connection ∇ is compatible with one of the structures $\beta, \gamma, \delta=(H, W)$ iff it is a H-connection which preserves the distribution W. It is not difficult to prove

Proposition 4.2. A connection ∇ on M is compatible with the (abpc)structure (F, P, J) iff it satisfies one of the conditions:

1. The tensor fields from one of the pairs $(F, P),(P, J),(J, F),(A, B)$ are covariant constant,
2. ∇ is compatible with one of the structure $\alpha, \beta, \gamma, \delta$.

Setting now, for a connection ∇ on M,

$$
\begin{equation*}
\nabla_{X} Y=F_{i}\left(\nabla_{X} Y\right), i=1,2, \stackrel{i}{\nabla}_{X} Y=P_{i}\left(\nabla_{X} Y\right), i=3,4, X, Y \in \mathcal{T}^{1}(M) \tag{4.5}
\end{equation*}
$$

one finds that the operators $\stackrel{i}{\nabla}, i=1,2,3,4$ are $\mathcal{F}(M)$-linear in the first argument, R-linear in the second and satisfy

$$
\begin{align*}
& \stackrel{i}{\nabla}_{X}(f Y)=X(f) F_{i}(Y)+f \stackrel{i}{\nabla}_{X} Y, i=1,2, \\
& \stackrel{i}{\nabla}_{X}(f Y)=X(f) P_{i}(Y)+f \stackrel{i}{\nabla}_{X} Y, i=3,4, \tag{4.6}
\end{align*}
$$

for $f \in \mathcal{F}(M)$ and $X, Y \in \mathcal{T}^{1}(M)$. It results from here that $\left(\stackrel{i}{\nabla}, F_{i}\right), i=1,2$ and $\left(\stackrel{i}{\nabla}, P_{i}\right), i=3,4$ are quasi-connections in the sense of Otsuki [12]. The restrictions of $\stackrel{i}{\nabla}$, with respect to the second argument, to $\mathcal{T}^{1}\left(M, V_{i}\right)$ give the connections induced by ∇ on the subbundles $V_{i}[6]$. When ∇ is compatible with the (abpc)-structure (F, P, J), the connections $\stackrel{i}{\nabla}$ coincide with the restrictions of ∇, with respect to second argument, to $\mathcal{T}^{1}\left(M, V_{i}\right), i=1,2,3,4$.

If ∇ is an arbitrary connection on M we can consider for the vector 1-forms $F_{i}, i=1,2$ and $P_{i}, i=3,4$, the exterior covariant derivatives with respect to ∇ given by

$$
\begin{align*}
& d F_{i}(X, Y)=\nabla_{X}\left(F_{i} Y\right)-\nabla_{Y}\left(F_{i} X\right)-F_{i}[X, Y], \\
& d=1,2 \tag{4.7}\\
& d P_{i}(X, Y)=\nabla_{X}\left(P_{i} Y\right)-\nabla_{Y}\left(P_{i} X\right)-P_{i}[X, Y], \\
& i=3,4
\end{align*}
$$

It is naturally to call the torsion of the connection $\stackrel{i}{\nabla}$, induced by ∇ to V_{i}, the restriction $\stackrel{i}{T}$, of $d F_{i}$ and $d P_{i}$ to corresponding $\mathcal{T}^{1}\left(M, V_{i}\right) \times \mathcal{T}^{1}\left(M, V_{i}\right), i=$ $1,2,3,4$. So, we have

$$
\stackrel{i}{T}\left(X_{i}, Y_{i}\right)= \begin{cases}\nabla_{X_{i}} Y_{i}-\nabla_{Y_{i}} X_{i}-F_{i}\left[X_{i}, Y_{i}\right], & i=1,2 \tag{4.8}\\ \nabla_{X_{i}} Y_{i}-\nabla_{Y_{i}} X_{i}-P_{i}\left[X_{i}, Y_{i}\right], & i=3,4\end{cases}
$$

If ∇ is compatible with the (abpc)-structure (F, P, J), we get for $\stackrel{i}{T}$, as tensor fields on M, the expressions

$$
\stackrel{i}{T}= \begin{cases}F_{i} \circ T \circ F_{i} \times F_{i}, & i=1,2 \tag{4.9}\\ P_{i} \circ T \circ P_{i} \times P_{i}, & i=3,4\end{cases}
$$

where T is the torsion of ∇.
In this case for the curvature of ∇ one obtains

$$
\begin{equation*}
R_{X Y} \circ F=F \circ R_{X Y}, \quad R_{X Y} \circ P=P \circ R_{X Y} \tag{4.10}
\end{equation*}
$$

i.e. $\quad R_{X Y}$, as endomorphism of $T M$, preserves the distributions $V_{i}, i=$ $1,2,3,4$.

From here it follows, for the curvatures $\stackrel{i}{R}$ of $\stackrel{i}{\nabla}$, considered as tensor fields on M,

$$
\stackrel{i}{R}_{X Y}= \begin{cases}R_{X Y} \circ F_{i}, & i=1,2 \tag{4.11}\\ R_{X Y} \circ P_{i}, & i=3,4\end{cases}
$$

i.e. the curvature of the induced connection $\stackrel{i}{\nabla}$ coincides with the restriction of the curvature R of ∇ to subbundle $V_{i}, i=1,2,3,4$.

We have also the following result:
Proposition 4.3. A connection ∇ on M, compatible with the (abpc)structure (F, P, J), is uniquely determined by its restriction $\stackrel{1}{\nabla}$ (respectively $\stackrel{2}{\nabla})$ with respect to second argument, to $\mathcal{T}^{1}\left(M, V_{1}\right)$ (respectively $\mathcal{T}^{1}\left(M, V_{2}\right)$) or by one of the pairs of partial connections $\left(\stackrel{1}{\nabla}_{X_{1}}, \stackrel{2}{\nabla}_{X_{2}}\right),\left(\stackrel{1}{\nabla}_{X_{2}}, \stackrel{2}{\nabla}_{X_{1}}\right)$, with $X_{i} \in \mathcal{T}^{1}\left(M, V_{i}\right), i=1,2$.

Indeed setting, for $Y \in \mathcal{T}^{1}(M), Y=Y_{1}+Y_{2}$ with $Y_{i} \in \mathcal{T}^{1}\left(M, V_{i}\right)$, $i=1,2$, from $\nabla F=0$ it follows $\nabla_{X} Y=\stackrel{1}{\nabla}_{X} Y_{1}+\stackrel{2}{\nabla}_{X} Y_{2}$. Then, from $\nabla P=0$ one obtains $\stackrel{2}{\nabla}_{X}=P \circ \stackrel{1}{\nabla}_{X} \circ P$ and so

$$
\begin{equation*}
\nabla_{X} Y=\stackrel{1}{\nabla}_{X} Y_{1}+\left(P \circ \stackrel{1}{\nabla}_{X} \circ P\right)\left(Y_{2}\right)=\left(P \circ \stackrel{2}{\nabla}_{X} \circ P\right)\left(Y_{1}\right)+\stackrel{2}{\nabla}_{X} Y_{2} \tag{4.12}
\end{equation*}
$$

Putting then $X=X_{1}+X_{2}$, one has $\stackrel{i}{\nabla}_{X}=\stackrel{i}{\nabla}_{X_{1}}+\stackrel{i}{\nabla}_{X_{2}}, i=1,2$ and from $\stackrel{1}{\nabla}_{X}=P \circ \stackrel{2}{\nabla}_{X} \circ P$ it follows

$$
\begin{equation*}
\stackrel{1}{\nabla}_{X}=\stackrel{1}{\nabla}_{X_{1}}+P \circ \stackrel{2}{\nabla}_{X_{2}} \circ P=P \circ \stackrel{2}{\nabla}_{X_{1}} \circ P+\stackrel{1}{\nabla}_{X_{2}} . \tag{4.13}
\end{equation*}
$$

From here, we obtain the following important result:
Theorem 4.1. On a manifold M endowed with an (abpc)-structure (F, P, J) there exists a unique connection ∇, with torsion T, satisfying the conditions

$$
\begin{equation*}
\nabla F=\nabla P=0, \quad T \circ F_{1} \times F_{2}=0 \tag{4.14}
\end{equation*}
$$

where F_{1} and F_{2} are the projectors of F.

Uniqueness. Let ∇ be a connection which satisfies (4.14). It results

$$
T\left(X_{1}, X_{2}\right)=\stackrel{2}{\nabla}_{X_{1}} X_{2}-\stackrel{1}{\nabla}_{X_{2}} X_{1}-F_{1}\left[X_{1}, X_{2}\right]-F_{2}\left[X_{1}, X_{2}\right]=0
$$

As V_{1} and V_{2} are supplementary, it follows from here,

$$
\stackrel{1}{\nabla}_{X_{2}} X_{1}=F_{1}\left[X_{2}, X_{1}\right], \stackrel{2}{\nabla}_{X_{1}} X_{2}=F_{2}\left[X_{1}, X_{2}\right], \quad \forall X_{i} \in \mathcal{T}^{1}\left(M, V_{i}\right), i=1,2
$$

But, from Proposition $4.3, \nabla$ being determined by $\stackrel{1}{\nabla}_{X_{2}}$ and $\stackrel{2}{\nabla}_{X_{1}}$, it is unique.

Existence. Setting for $X_{i}, Y_{i} \in \mathcal{T}^{i}\left(M, V_{i}\right), i=1,2$

$$
\begin{align*}
& \nabla_{X_{1}} Y_{1}=F_{1} \circ P\left[X_{1}, P Y_{1}\right], \nabla_{X_{1}} X_{2}=F_{2}\left[X_{1}, X_{2}\right] \\
& \nabla_{X_{2}} X_{1}=F_{1}\left[X_{2}, X_{1}\right], \nabla_{X_{2}} Y_{2}=F_{2} \circ P\left[X_{2}, P Y_{2}\right] \tag{4.5}
\end{align*}
$$

and using the relations $F_{1} \circ P=P \circ F_{2}, F_{2} \circ P=P \circ F_{1}$, one obtains that ∇ is a connection on M which satisfies the conditions (4.14).

Changing the order of F and P (and so of $\left(V_{1}, V_{2}\right)$ with $\left(V_{3}, V_{4}\right)$), we obtain another unique connection ∇^{\prime} on M which satisfies the conditions

$$
\begin{equation*}
\nabla^{\prime} F=\nabla^{\prime} P=0, \quad T^{\prime} \circ P_{3} \times P_{4}=0 \tag{4.16}
\end{equation*}
$$

where T^{\prime} is the torsion of ∇^{\prime}.
Definition 4.4. The connections ∇ and ∇^{\prime}, which satisfy the conditions (4.14) and (4.16) respectively, will be called the first and the second canonical connection associated to (abpc)-structure (F, P, J) on M.

From the analogous of (4.15) for ∇^{\prime} one obtains:
Proposition 4.4. For an ($a b p c$)-structure (F, P, J) on M, the second canonical connection ∇^{\prime} may be expressed with the help of the first canonical connection ∇ by the relations:

$$
\begin{align*}
& \nabla_{X_{3}}^{\prime} X_{4}=\nabla_{X_{3}} X_{4}-P_{4}\left(T\left(X_{3}, X_{4}\right)\right) \\
& \nabla_{X_{4}}^{\prime} X_{3}=\nabla_{X_{4}} X_{3}-P_{3}\left(T\left(X_{4}, X_{3}\right)\right) \\
& \nabla_{X_{3}}^{\prime} Y_{3}=\nabla_{X_{3}} Y_{3}-P_{3} \circ F\left(T\left(X_{3}, F Y_{3}\right)\right), \tag{4.17}\\
& \nabla_{X_{4}}^{\prime} Y_{4}=\nabla_{X_{4}} Y_{4}-P_{4} \circ F\left(T\left(X_{4}, F Y_{4}\right)\right) .
\end{align*}
$$

From here one obtains

Proposition 4.5. The first and second canonical connection ∇ and ∇^{\prime} coincide iff one of the following conditions is satisfied

$$
\begin{equation*}
T \circ P_{3} \times P_{4}=0 ; \quad T^{\prime} \circ F_{1} \times F_{2}=0 \tag{4.18}
\end{equation*}
$$

5. Involutivity and integrability. If (F, P, J) is an (abpc)-structure on M, for the Nijenhuis tensor fields of F and P, we obtain (4.19)

$$
\begin{aligned}
& N_{F}\left(X_{1}, Y_{1}\right)=4 F_{2}\left[X_{1}, Y_{1}\right], N_{F}\left(X_{1}, Y_{2}\right)=0, N_{F}\left(X_{2}, Y_{2}\right)=4 F_{1}\left[X_{2}, Y_{2}\right] \\
& N_{P}\left(X_{3}, Y_{3}\right)=4 P_{4}\left[X_{3}, Y_{3}\right], N_{P}\left(X_{3}, Y_{4}\right)=0, N_{P}\left(X_{4}, Y_{4}\right)=4 P_{3}\left[X_{4}, Y_{4}\right]
\end{aligned}
$$

Then, if ∇ (respectively ∇^{\prime}) is a connection on M, compatible with F (respectively P) we get

$$
\begin{align*}
& \left.N_{F}\left(X_{1}, Y_{1}\right)=-4 F_{2} \circ T\left(X_{1}, Y_{1}\right)\right), N_{F}\left(X_{1}, Y_{2}\right)=0 \\
& N_{F}\left(X_{2}, Y_{2}\right)=-4 F_{1} \circ T\left(X_{2}, Y_{2}\right) \\
& N_{P}\left(X_{3}, Y_{3}\right)=-4 P_{4} \circ T^{\prime}\left(X_{3}, Y_{3}\right), N_{P}\left(X_{3}, Y_{4}\right)=0 \tag{4.20}\\
& N_{P}\left(X_{4}, Y_{4}\right)=-P_{4} \circ T^{\prime}\left(X_{4}, Y_{4}\right)
\end{align*}
$$

From these formulas it follows:

Theorem 4.2. a) The eigendistribution $V_{i}, i=1,2,3,4$ is involutive iff it is satisfied respectively one of the following conditions for:
$\left.\left.\left.V_{1}: 1\right) F_{2}\left[X_{1}, Y_{1}\right]=0,2\right) N_{F}\left(X_{1}, Y_{1}\right)=0,3\right) F_{2} \circ N_{F}=0$,
4) $F_{2} \circ T\left(X_{1}, Y_{1}\right)=0$.
$\left.\left.\left.V_{2}: 1\right) F_{1}\left[X_{2}, Y_{2}\right]=0,2\right) N_{F}\left(X_{2}, Y_{2}\right)=0,3\right) F_{1} \circ N_{F}=0$,
4) $F_{1} \circ T\left(X_{2}, Y_{2}\right)=0$,
$V_{3}:$ 1) $\left.\left.P_{4}\left[X_{3}, Y_{3}\right]=0,2\right) N_{P}\left(X_{3}, Y_{3}\right)=0,3\right) P_{4} \circ N_{P}=0$,
4) $P_{4} \circ T^{\prime}\left(X_{3}, y_{3}\right)=0$,
$\left.\left.\left.V_{4}: 1\right) P_{3}\left[X_{4}, Y_{4}\right]=0,2\right) N_{P}\left(X_{4}, Y_{4}\right)=0,3\right) P_{3} \circ N_{P}=0$,
4) $P_{3} \circ T^{\prime}\left(X_{4}, Y_{4}\right)=0$,
where T (respectively T^{\prime}) is the torsion of a connection ∇ (respectively ∇^{\prime}) compatible with F (respectively P).
b) V_{1} and V_{2} are simultaneous involutive iff $N_{F}=0$ or $T=\stackrel{1}{T}+\stackrel{2}{T}$, where T is the torsion of ∇ and $\stackrel{1}{T}, \stackrel{2}{T}$ the torsion of the induced connections on V_{1} and V_{2} respectively.
c) V_{3} and V_{4} are simultaneous involutive iff $N_{P}=0$, or $T^{\prime}=\stackrel{3}{T^{\prime}}+\stackrel{4}{T^{\prime}}$, where T^{\prime} is the torsion of ∇^{\prime} and $\stackrel{3}{T^{\prime}}, \stackrel{4}{T^{\prime}}$ the torsion of the induced connections on V_{3} and V_{4} respectively.
d) V_{1}, V_{2} and V_{3} are simultaneous involutive iff is satisfied one of the conditions a), b), c), for each of them.
e) V_{1}, V_{2}, V_{3} and V_{4} are simultaneous involutive iff one of the following conditions is satisfied

$$
N_{F}=N_{P}=0 ; \quad T=0 ; \quad T^{\prime}=0
$$

where T and T^{\prime} are the torsions of the first and second canonical connections.

Remark. The condition d) is very important because an (abpc)-structure (F, P, J), for which all the distributions V_{1}, V_{2}, V_{3} are involutive, is equivalent with a 3-web on M [1.] So, the theory of 3 -webs is subordinated to the theory of (abpc)-structures or to anyone of the structures that are equivalent with them.

Definition 4.5. An (abpc)-structure (F, P, J) is integrable iff there exists an atlas on M so that the associated natural local bases are adapted to the structure.

Concerning the integrability for an (abpc)-structure, from [16] one obtains:

Proposition 4.5. An (abpc)-structure (F, P, J) is integrable iff there exists on M a flat (F, P, J)-connection.

From here and the uniqueness of the canonical connection one obtains:
Theorem 4.3. The $(a b p c)$-structure (F, P, J) is integrable if the first or the second canonical connections is flat.

Definition 4.6. A connection ∇ on M is compatible with the Riemannian (mabpc)-structure $\left(F, P, J, g_{1}\right)$ or is a (F, P, J, g_{1})-connection, iff it satisfies the conditions

$$
\begin{equation*}
\nabla F=\nabla P=\nabla g_{1}=0 \tag{4.21}
\end{equation*}
$$

For such a connection one has also

$$
\begin{equation*}
\nabla J=\nabla g_{2}=\nabla g_{3}=\nabla \omega=0, \nabla F_{1}=\nabla F_{2}=\nabla P_{1}=\nabla P_{2}=0 \tag{4.22}
\end{equation*}
$$

The following theorem holds
Theorem 4.4. Let $\left(F, P, J, g_{1}\right)$ be a Riemannian (mabpc)-structure on M and $\stackrel{1}{g}=g_{1} / V_{1} \times V_{1}, \stackrel{2}{g}=g_{1} / V_{2} \times V_{2}$, the induced metrics on V_{1} and V_{2}. There exists an unique $\left(F, P, J, g_{1}\right)$-connection D on M, which satisfies the conditions:

$$
\begin{equation*}
\stackrel{i}{D}_{X} \stackrel{i}{g}=0, \quad \stackrel{i}{T}=0, \quad X \in \mathcal{T}^{1}\left(M, V_{i}\right), \quad i=1,2 \tag{4.23}
\end{equation*}
$$

where $\stackrel{i}{D}$ is the connection on V_{i} induced by D and $\stackrel{i}{T}$ is its torsion.
Uniqueness. Indeed, from Proposition 4.3 it follows that a connection D, compatible with the (abpc)-structure (F, P, J), is uniquely determined by $\stackrel{1}{D}_{X}, X \in \mathcal{T}^{1}\left(M, N_{1}\right)$ and $\stackrel{2}{D}_{X}, X \in \mathcal{T}^{1}\left(M, V_{2}\right)$. But, from (4.23) one has

$$
\begin{align*}
& X_{g}^{i}(Y, Z)=\stackrel{i}{g}\left(\stackrel{i}{D}_{X} Y, Z\right)+\stackrel{i}{g}\left(Y, \stackrel{i}{D_{X}} Z\right) \\
& \stackrel{i}{D_{X}} Y-\stackrel{i}{D_{Y}} X=F_{i}[X, Y], X, Y, Z \in \mathcal{T}^{1}\left(M, V_{i}\right), i=1,2 \tag{4.24}
\end{align*}
$$

By analogously computation with that used in the Riemannian case, [9] we obtain, for any $X, Y, Z \in \mathcal{T}^{1}\left(M, V_{i}\right), i=1,2$,

$$
\begin{align*}
2 \stackrel{i}{g}\left(D_{X}^{i} Y, Z\right) & =X^{i} g(Y, Z)+Y \stackrel{i}{g}(Z, X)-Z \stackrel{i}{g}(X, Y)-\stackrel{i}{g}\left(F_{i}[Y, Z], X\right) \tag{4.25}\\
& +\stackrel{i}{g}\left(F_{i}[Z, X], Y\right)+\stackrel{i}{g}\left(F_{i}[X, Y], Z\right)
\end{align*}
$$

As these formulas determine uniquely $\stackrel{i}{D}_{X}, X \in \mathcal{T}^{i}\left(M, V_{i}\right), i=1,2$, the uniqueness of D is proved.

Existence. Let $\stackrel{i}{D}_{X}, X \in \mathcal{T}^{1}\left(M, V_{i}\right), i=1,2$, be given by (4.25). From Proposition 4.3, it results that these partial connections determine a connection D on M, compatible with the (abpc)-structure (F, P, J) and by a simple computation we find that D satisfies also the conditions (4.23) and that $D g_{1}=0$.

Definition 4.7. The unique connection D, given by the Theorem 4.4, will be called the first natural connection associated to Riemannian (mabpc)structure $\left(F, P, J, g_{1}\right)$.

Remark. The first natural connection D satisfies also the condition:

$$
\begin{equation*}
\stackrel{i}{D} \stackrel{i}{g}=0, \quad D g_{i}=0, \quad i=1,2 ; \quad D \omega=0 \tag{4.26}
\end{equation*}
$$

Changing in Theorem 4.4 F with P and $\left(V_{1}, V_{2}\right)$ with $\left(V_{3}, V_{4}\right)$ one obtains another connection D^{\prime} compatible with the Riemannian (mabpc)-structure (F, P, J, g_{1}), called the second natural connection.

From here it follows:
Proposition 4.6. The first natural connection D coincides with the Levi-Civita connection for one of the metrique $g_{i}, i=1,2,3$ (and so for all) iff it is torsionless.

In this case D coincides also with the second natural connection D^{\prime} and with the first and second canonical connection ∇ and ∇^{\prime}. Also in this case the structures F, P, J, ω are integrable and the distributions $V_{i}, i=1,2,3,4$ are involutive. Hence we have:

Theorem 4.8. If the first natural connection D for the Riemannian (mabpc)-structure $\left(F, P, J, g_{1}\right)$ is torsionless, then one obtains on M :
a) two Riemannian local decomposable structures $\left(F, g_{1}\right)$ and $\left(P, g_{1}\right)$, with the associated neutral metrics g_{2} and g_{3} respectively,
b) two neutral local decomposable structures $\left(F, g_{2}\right)$ and $\left(P, g_{3}\right)$, with the associated Riemannian metric g_{1},
c) two para-Kähler structures $\left(F, g_{3}\right)$ and $\left(P, g_{2}\right)$ with the associated symplectic 2-forms ω and $-\omega$, respectively,
d) a Kähler structure (J, g_{1}) with the associated symplectic 2-form ω and
e) two anti-Kähler structures $\left(J, g_{2}\right)$ and $\left(J, g_{3}\right)$ with the associated neutral metrics $-g_{3}$ and g_{2}, respectively.
5. Example. Let N be a paracompact and connected manifold, $M=$ $T N$ the total space of the tangent bundle $\pi: T N \rightarrow N$ and $V T N=$ $\operatorname{Ker} T \pi$, the vertical subbundle of $T N$. Denote by $\left(x^{i}\right)$ the local coordinates and by $\left(\partial_{i}\right),\left(d^{i}\right)$, where $\partial_{i}=\frac{\partial}{\partial x^{i}}, d^{i}=d x^{i}$, the associated local dual bases on N. Setting for each 1 -form $\alpha \in \mathcal{T}_{1}(N)$, given locally by $\alpha(x)=\alpha_{i}(x) d^{i}$, $\gamma \alpha(z)=\alpha_{i}(x) y^{i}$, where $z=(x, y) \in T_{x} N$, we obtain a class of functions on $T N$, with the property that each vector field $A \in \mathcal{T}^{1}(T N)$ is uniquely determined by its values on these functions. We extend γ to tensor fields $S \in \mathcal{T}_{1}^{1}(T N)$ by putting $\gamma S(\gamma \alpha)=\gamma(\alpha \circ S), \forall \alpha \in \mathcal{T}_{1}(N)$. Let be then ∇ a connection on N and $X \in \mathcal{T}^{1}(N)$. Setting

$$
\begin{equation*}
X^{h}(\gamma \alpha)=\gamma\left(\nabla_{X} \alpha\right), \quad X^{v}(\gamma \alpha)=\alpha(X) \circ \pi, \quad \forall \alpha \in \mathcal{T}_{1}(N) \tag{5.1}
\end{equation*}
$$

we obtain two vector fields on $T N$, called respectively, the horizontal and the vertical lift of X. Putting then, for each $f \in \mathcal{F}(N), f^{h}=f^{v}=f \circ \pi$, one obtains the following useful formulas

$$
\begin{align*}
& (f X)^{h}=f^{h} X^{h}, \quad(f X)^{v}=f^{v} X^{v}, \\
& {\left[X^{h}, Y^{h}\right]=[X, Y]^{h}-\gamma R_{X Y},\left[X^{h}, Y^{v}\right]=\left(\nabla_{X} Y\right)^{v},\left[X^{v}, Y^{v}\right]=0,} \tag{5.2}
\end{align*}
$$

where $X, Y \in \mathcal{T}^{1}(N)$ and R is the curvature of ∇.
Considering then the tensor fields $F, P J$ given by

$$
\begin{align*}
& F\left(X^{h}\right)=X^{h}, F\left(X^{v}\right)=-X^{v}, P\left(X^{h}\right)=X^{v}, P\left(X^{v}\right)=X^{h} \\
& J\left(X^{h}\right)=X^{v}, J\left(X^{v}\right)=-X^{h} \tag{5.3}
\end{align*}
$$

for each $X \in \mathcal{T}^{1}(N)$ it comes out that they satisfy (2.1) and so we have:
Proposition 5.1. Given a connection ∇ on N, the tensor fields F, P, J defined by (5.3) determine an (abpc)-structure on the total space $T N$.

The eigendistributions $V_{i}, i=1,2,3,4$ associated to F and P are generated respectively by $X^{h}, X^{v}, X^{h}+X^{v}, X^{h}-X^{v}, \forall X \in \mathcal{T}^{1}(N)$. For the first canonical connection, of the (abpc)-structure (F, P, J), on $T N$, denoted by D, we obtain from (4.15) and (5.3)

$$
\begin{align*}
& D_{X^{h}} Y^{h}=\left(\nabla_{X} Y\right)^{h}, D_{X^{h}} Y^{v}=\left(\nabla_{X} Y\right)^{v} \\
& D_{X^{v}} Y^{h}=D_{X^{v}} Y^{v}=0, X, Y \in \mathcal{T}^{1}(N) \tag{5.4}
\end{align*}
$$

and so it follows:
Proposition 5.2. The first canonical connection of the (abpc)-structure (F, P, J) on $T N$, given by (5.3), associated to connection ∇ on N, coincides with the diagonal lift of ∇, see [5].

Going further, for nonvanishing components of the torsion and curvature of D, one obtains

$$
\begin{align*}
& \mathcal{T}\left(X^{h}, Y^{h}\right)=T(X, Y)^{h}+\gamma R_{X Y}, \mathcal{R}_{X^{h} Y^{h}} Z^{h}=\left(R_{X Y} Z\right)^{h} \\
& \mathcal{R}_{X^{h} Y^{h}} Z^{v}=\left(R_{X Y} Z\right)^{v} \tag{5.5}
\end{align*}
$$

where T and R are the torsion and curvature of ∇.
From (5.5) and Proposition 4.5 it results:
Proposition 5.3. The (abpc)-structure (F, P, J) on $T N$, associated by (5.3) to connection ∇ on N, is integrable iff ∇ is a flat connection.

Let be now g a Riemannian metric on N, ∇^{g} the Levi-Civita connection of g and (F, P, J) the (abpc)-structure on $T N$ associated to ∇^{g}. We consider the (0,2)-tensor fields $g^{h}, g^{v}, g^{v h}$ and $g^{h v}$ on $T N$ given, for each $X, Y \in$ $\mathcal{T}^{1}(N)$, by:

$$
\begin{align*}
& g^{h}\left(X^{h}, Y^{h}\right)=g(X, Y) \circ \pi \\
& g^{h}\left(X^{h}, Y^{v}\right)=g^{h}\left(X^{v}, Y^{h}\right)=g^{h}\left(X^{v}, Y^{v}\right)=0 \\
& g^{v}\left(X^{h}, Y^{h}\right)=g^{v}\left(X^{h}, Y^{v}\right)=g^{v}\left(X^{v}, Y^{h}\right)=0 \\
& g^{v}\left(X^{v}, Y^{v}\right)=g(X, Y) \circ \pi \\
& g^{v h}\left(X^{h}, Y^{h}\right)=g^{v h}\left(X^{h}, Y^{v}\right)=g^{v h}\left(X^{v}, Y^{v}\right)=0 \tag{5.6}\\
& g^{v h}\left(X^{v}, Y^{h}\right)=g(X, Y) \circ \pi \\
& g^{h v}\left(X^{h}, Y^{h}\right)=g^{h v}\left(X^{v}, Y^{h}\right)=g^{h v}\left(X^{v}, Y^{v}\right)=0 \\
& g^{h v}\left(X^{h}, Y^{v}\right)=g(X, Y) \circ \pi
\end{align*}
$$

Setting then

$$
\begin{equation*}
g_{1}=g^{h}+g^{v} \tag{5.7}
\end{equation*}
$$

we obtain a Riemannian metric on $T N$, called the Sasaki metric associated to g which satisfies the conditions

$$
\begin{equation*}
g_{1} \circ F \times F=g_{1} \circ P \times P=g_{1} \circ J \times J=g_{1} \tag{5.8}
\end{equation*}
$$

From here one obtains:
Proposition 5.4. A Riemannian metric g on N determines by (5.3), (5.6) and (5.7) a Riemannian (mapbc)-structure (F, P, J, g_{1}) on $T N$, with the associated metrics g_{2}, g_{3} and 2-form ω, given by

$$
\begin{equation*}
g_{2}=g^{h}-g^{v}, \quad g_{3}=g^{v h}+g^{h v}, \quad \omega=g^{v h}-g^{h v} . \tag{5.9}
\end{equation*}
$$

Denoting by \mathcal{D} the first natural connection associated to Riemannian (mabpc)-structure (F, P, J, g_{1}), given by (5.3) and (5.7), we obtain from (4.25) and Proposition 4.3,

$$
\begin{equation*}
\mathcal{D}_{X^{h}} Y^{h}=\left(\nabla_{X}^{g} Y\right)^{h}, \mathcal{D}_{X^{h}} Y^{v}=\left(\nabla_{X}^{g} Y\right)^{v}, \mathcal{D}_{X^{v}} Y^{h}=\mathcal{D}_{X^{v}} Y^{v}=0 . \tag{5.10}
\end{equation*}
$$

Hence, we have:
Proposition 5.5. The first natural connection of the Riemannian (mapbc)-structure (F, P, J, g_{1}) on TN, associated to Riemannian metric g on N, coincide with the diagonal lift for the Levi-Civita connection of the metric g.

Remark. For a Riemannian metric g on N and its Levi-Civita connection ∇^{g}, the first natural connection, associated to Riemannian (mabpc)structure (F, P, J, g_{1}) coincides with the first canonical connection, associated to (abpc)-structure (F, P, J) on $T N$, determined by g.

The nonvanishing components for the first natural connection \mathcal{D} are given by

$$
\begin{equation*}
\mathcal{T}\left(X^{h}, Y^{h}\right)=\gamma R_{X Y}^{g}, \mathcal{R}_{X^{h} Y^{h}} Z^{h}=\left(R_{X Y}^{g} Z\right)^{h}, \mathcal{R}_{X^{h} Y^{h}} Z^{v}=\left(R_{X Y}^{g} Z\right)^{v}, \tag{5.6}
\end{equation*}
$$

where R^{g} is the curvature of ∇^{g}. From here it follows:
Proposition 5.6. The torsion and the curvature for the first natural connection \mathcal{D} are simultaneously zero, namely iff the curvature of the LeviCivita connection ∇^{g} of g is zero.

REFERENCES

1. Akivis, M.A.; Goldberg, V.V. - Differential Geometry of Webs, Editor F.J.E. Handbook of Differential Geometry, v.I, Amsterdam, North-Holland, 1-52, 2000.
2. Bonome, A.; Castro, R., Garcia-Rio, E.; Hervella, L.M.; Matsushita, Y. Almost complex manifolds with holomorphic distributions, Rendiconti di matematica, Seria VII, volume 14, Roma (1999), 567-589.
3. Cruceanu, V. - Une classe de structures geometriques sur le fibré cotangent, Tensor N.S. 53(1993), 192-201
4. Cruceanu, V.; Fortuny, P. and Gadea, P. - A Survey in Paracomplex Geometry, Rocky Mountain J. Math. v. 26, n. 1 (1996), 83-115
5. Cruceanu, V. - On certain Lifts in the tangent Bundle, An.St. Univ. "Al.I. Cuza", Iaşi, tom XLVI, s.I-a, Mat. 46(2000), f.1, 57-72
6. Cruceanu, V. - Almost Hyperproduct structures on Manifolds, An.St. Univ. "Al.I. Cuza", Iaşi, s.I-a, Mat. 2002, f.2, 337-354.
7. Cruceanu, V. - Almost Product Bicomplex Structures on Manifolds, An.St. Univ. "Al.I. Cuza", Iaşi, tom XLIX, s.I-a, Mat. 2005, f.1, 99-118
8. Hsu, C.J. - On some structures which are similar to quaternion structures, Tohoku Math. J. v. 12 (1960), 403-428.
9. Kobayashi, S.; Nomizu, K. - Foundations of Differential Geometry, v.I, II, Interscience, New York, 1963, 1969.
10. Liberman, P. - Sur le probleme d'equivalence de certaines structures infinitesimales, Ann. Mat. Pure Appl. 4(36), 1954, 27-120.
11. Maksym, A.; Zmurek, A. - Manifold with the 3-structure, Ann. Univ. Marie-CurieSkladowska, v.XLI(1987), 51-63.
12. Otsuki, T. - On general Connections I, II, Math. J. Okayama Univ. 9(1960), 99-164, 10(1961), 113-124.
13. Salamon, S. - Quaternionic Kähler Manifolds, Inv. Math. 67(1986), 143-171.
14. Santamaria, S.R. - Examples of Manifolds with three supplementary distributions, Atti. Sem. Mat. Fis. Moderna, XLVII(1999), 419-428.
15. Santamaria, S.R. - Invariantes diferenciales de las estructuras casi-biparacomplejas y el problema de equivalencia, Thesis Universidad de Cantabria, Spain, 2002.
16. Vidal, E.; Vidal Costa, E. - Special Connections and Almost Foliated Metrics, J. Diff. Geom. 8(1973), 297-304.
17. Yano, K.; Ako, M. - Almost quaternionic structures of the second kind and almost tangent structures, Kodai Math. Sem. Rep. 39(1973), 63-94.

Received: 21.XI. 2005
Faculty of Mathematics, University "Al.I. Cuza", Iaşi 700 506, ROMÂNIA

[^0]: *This paper was partially supported by CNCSIS-ROMÂNIA

