A PRODUCT BICOMPLEX STRUCTURE ON THE TOTAL SPACE OF A VECTOR BUNDLE

BY

VASILE CRUCEANU*

Abstract

One studies an almost product bicomplex structure on the total space of a vector bundle, obtained by lifting an almost Hermitian structure on the base manifold and one on the bundle, with the help of a linear connection, defined on the bundle. Finally, some important particular cases are analysed.

Mathematics Subject Classification 2000: 53C55. Key words: Almost product bicomplex structure. Associated metric and symplectic

 structures. Integrability and compatible connections.1. Introduction. An almost product bicomplex (apbc)-structure [2] on a manifold M is defined by three (1,1)-tensor fields F, J, J^{\prime} on M, which satisfy the conditions

$$
\begin{equation*}
-F^{2}=J^{2}=J^{\prime 2}=F \circ J \circ J^{\prime}=-I, \quad F \neq \pm I . \tag{1.1}
\end{equation*}
$$

It follows that F is an almost product (ap)-structure and J, J^{\prime} are almost complex (ac)-structures, on M, which are connected by the following relations

$$
\begin{equation*}
F \circ J=J \circ F=J^{\prime}, \quad J \circ J^{\prime}=J^{\prime} \circ J=-F, \quad J^{\prime} \circ F=F \circ J^{\prime}=J . \tag{1.2}
\end{equation*}
$$

A Riemannian apbc-structure on a manifold M is a quadruple $\left(F, J, J^{\prime}, G\right)$, where $\left(F, J, J^{\prime}\right)$ is an apbc-structure and G is a Riemannian metric on M, so that

$$
\begin{equation*}
G \circ F \times F=G \circ J \times J=G \circ J^{\prime} \times J^{\prime}=G, \tag{1.3}
\end{equation*}
$$

[^0]i.e. G is invariant with respect to the automorphisms F, J and J^{\prime} of $T M$. We consider further
\[

$$
\begin{equation*}
G^{\prime}=G \circ I \times F, \quad \Omega=G \circ I \times J, \quad \Omega^{\prime}=G \circ I \times J^{\prime} \tag{1.4}
\end{equation*}
$$

\]

and we obtain the following table of compatibilities [2].

\circ	F	J	J^{\prime}
G	$G \circ F \times F=G$	$G \circ J \times J=G$	$G \circ J^{\prime} \times J^{\prime}=G$
	$G \circ I \times F=G^{\prime}$	$G \circ I \times J=\Omega$	$G \circ I \times J^{\prime}=\Omega^{\prime}$
G^{\prime}	$G^{\prime} \circ F \times F=G^{\prime}$	$G^{\prime} \circ J \times J=G^{\prime}$	$G^{\prime} \circ J^{\prime} \times J^{\prime}=G^{\prime}$
	$G^{\prime} \circ I \times F=G$	$G^{\prime} \circ I \times J=\Omega^{\prime}$	$G^{\prime} \circ I \times J^{\prime}=\Omega$
Ω	$\Omega \circ F \times F=\Omega$	$\Omega \circ J \times J=\Omega$	$\Omega \circ J^{\prime} \times J^{\prime}=\Omega$
	$\Omega \circ I \times F=\Omega^{\prime}$	$\Omega \circ I \times J=-G$	$\Omega \circ I \times J^{\prime}=-G^{\prime}$
Ω^{\prime}	$\Omega^{\prime} \circ F \times F=\Omega^{\prime}$	$\Omega^{\prime} \circ J \times J=\Omega^{\prime}$	$\Omega^{\prime} \circ J^{\prime} \times J^{\prime}=\Omega^{\prime}$
	$\Omega^{\prime} \circ I \times F=\Omega$	$\Omega^{\prime} \circ I \times J=G^{\prime}$	$\Omega^{\prime} \circ I \times J^{\prime}=-G$

From here, we get that to a Riemannian $a p b c$-structure on a manifold M there are subordinate the following structures:

1) A Riemannian structure (F, G) with the associated pseudo-Riemannian metric G^{\prime}.
2) An almost symplectic ap-structure (F, Ω) with the associated 2-form Ω^{\prime}.
3) Two almost Hermitian structures (J, G) and $\left(J^{\prime}, G\right)$ with the associated 2 -forms Ω and Ω^{\prime} respectively.
4) Two indefinit Hermitian structures $\left(J, G^{\prime}\right)$ and $\left(J^{\prime}, G^{\prime}\right)$ with the associated 2 -forms Ω^{\prime} and Ω respectively.

The $a p b c$-structures on a manifold were considered by Liberman [6] and more recently by Bonome, Castro, Garcia-Rio, Hervella and Matsushita in the joint paper [1] and by Cruceanu [2].

In this paper, we give an example of an $a p b c$-structure on the total space of a vector bundle, obtained by lifting an almost Hermitian structure on the base manifold and one on the bundle, using a linear connection on the bundle.
2. Definitions and notations. Let $\xi=(E, \pi, M)$ be a vector bundle with base manifold M, total space E and projection $\pi: E \rightarrow M$. Denote by $\left(x^{i}\right),\left(y^{a}\right),\left(x^{i}, y^{a}\right)$ the local coordinates on M, ξ, E respectively and by $\left(\partial_{i}, d^{i}\right),\left(e_{a}, e^{a}\right),\left(\partial_{i}, \partial_{a}, d^{i}, d^{a}\right)$, the corresponding dual local bases,
where $\partial_{i}=\frac{\partial}{\partial x^{i}}, d^{i}=d x^{i}, \partial_{a}=\frac{\partial}{\partial y^{a}}, d^{a}=d y^{a}, i, j, k,=1,2, \ldots, n, a, b, c=$ $1,2, \ldots, m, n=\operatorname{dim} M, m=\operatorname{rank} \xi$. Denote then by $\mathcal{F}(M)$ the ring of real functions, and by $\mathcal{T}_{s}^{r}(M), \mathcal{T}_{s}^{r}(\xi)$ the $\mathcal{F}(M)$-module of (r, s)-tensor fields of M and ξ. Next, for each 1-forme α on ξ, given locally by $\alpha(x)=\alpha_{a}(x) e^{a}$, we put $\gamma \alpha(z)=\alpha_{a}(x) y^{a}$, where $z=\left(x^{i}, y^{a}\right) \in E_{x}$ and obtain a class of functions on E, with the property that every vector field on E is uniquely determined by its values on these functions. The mapping γ may be extended to $(1,1)$-tensor fields S on ξ, by putting

$$
\begin{equation*}
\gamma S(\gamma \alpha)=\gamma(\alpha \circ S), \quad \forall \alpha \in \mathcal{T}_{1}(\xi) \tag{2.1}
\end{equation*}
$$

Locally, if $S(x)=S_{b}^{a}(x) e_{a} \otimes e^{b}$, then $\gamma S(z)=S_{b}^{a}(x) y^{b} \partial_{a}$ and so γS is a vector field on E. Then, let D be a linear connection on ξ, X a vector field on M and u a section on ξ. Setting

$$
\begin{equation*}
x^{h}(\gamma \alpha)=\gamma\left(D_{X} \alpha\right), \quad u^{v}(\gamma \alpha)=\alpha(u) \circ \pi, \quad \forall \alpha \in \mathcal{T}_{1}(\xi) \tag{2.2}
\end{equation*}
$$

one obtain two vector fields on the total space E, called respectively the horizontal lift of X and the vertical lift of u. One has the useful relations

$$
\begin{align*}
& f^{v}=f^{h}=f \circ \pi,(f X)^{h}=f^{h} X^{h},(f u)^{v}=f^{v} u^{v}, \\
& {\left[X^{h}, Y^{h}\right]=[X, Y]^{h}-\gamma R_{X Y}^{D}, \quad\left[X^{h}, u^{v}\right]=\left(D_{X} u\right)^{v}, \quad\left[u^{v}, v^{v}\right]=0,} \tag{2.3}
\end{align*}
$$

where $f \in \mathcal{F}(M), X, Y \in \mathcal{T}^{1}(M), u, v \in \mathcal{T}^{1}(\xi)$ and R^{D} is the curvature of D.

Putting now

$$
\begin{equation*}
F\left(X^{h}\right)=X^{h}, \quad F\left(u^{v}\right)=-u^{v}, \quad X \in \mathcal{T}^{1}(M), \quad u \in \mathcal{T}^{1}(\xi) \tag{2.4}
\end{equation*}
$$

we obtain an ap-structure on E, whose +1 and -1 eigendistributions (subbundles) are respectively the horizontal distribution HTE, associated to linear connection D and the vertical distribution $V T E$ of the bundle ξ.

For $f \in \mathcal{T}_{1}^{1}(M), \varphi \in \mathcal{T}_{1}^{1}(\xi)$ and $g \in \mathcal{T}_{2}(M), \psi \in \mathcal{T}_{2}(\xi)$, we define the horizontal (h) and vertical (v) lifts by

$$
\begin{align*}
& f^{h}\left(X^{h}\right)=f(X)^{h}, \quad f^{h}\left(u^{v}\right)=0 ; \varphi^{v}\left(X^{h}\right)=0, \varphi^{v}\left(u^{v}\right)=\varphi(u)^{v} \tag{2.5}\\
& g^{h}\left(X^{h}, Y^{h}\right)=g(X, Y)^{h}, g^{h}\left(X^{h}, u^{v}\right)=g^{h}\left(u^{v}, X^{h}\right)=g^{h}\left(u^{v}, v^{v}\right)=0 \\
& \psi^{v}\left(X^{h}, Y^{h}\right)=\psi^{v}\left(X^{h}, u^{v}\right)=\psi^{v}\left(u^{v}, X^{h}\right)=0, \psi^{v}\left(u^{v}, v^{v}\right)=\psi(u, v)^{v}
\end{align*}
$$

for each $X, Y \in \mathcal{T}^{1}(M)$ and $u, v \in \mathcal{T}^{1}(\xi)$.
Putting then, for $f \in \mathcal{T}_{1}^{1}(M)$ and $\varphi \in \mathcal{T}_{1}^{1}(\xi)$,

$$
\begin{equation*}
J=f^{h}+\varphi^{v}, \quad J^{\prime}=f^{h}-\varphi^{v} \tag{2.6}
\end{equation*}
$$

are remarking that $F=I_{T M}^{h}-I_{\xi}^{v}$, we obtain

$$
\begin{aligned}
& F^{2}=I, J^{2}=J^{\prime 2}=\left(f^{h}\right)^{2}+\left(\varphi^{v}\right)^{2} \quad F \circ J=J \circ F=J^{\prime}, \\
& J \circ J^{\prime}=J^{\prime} \circ J=\left(f^{h}\right)^{2}-\left(\varphi^{v}\right)^{2}, \quad J^{\prime} \circ F=F \circ J^{\prime}=J .
\end{aligned}
$$

So, we have
Theorem 2.1. Given a linear connection D on ξ and two (1.1)-tensor fields f on M and φ on ξ, the triplet $\left(F, J, J^{\prime}\right)$ defined by (2.4) and (2.5) determines on E an apbc-structure iff f and φ are ac-structures on M and ξ respectively.

Now, let g and ψ be $(0,2)$-tensor fields on M resp. ξ and

$$
\begin{equation*}
\omega=g \circ I \times f, \quad \tau=\psi \circ I \times \varphi \tag{2.7}
\end{equation*}
$$

Setting

$$
\begin{equation*}
G=g^{h}+\psi^{v}, \quad G^{\prime}=g^{h}-\psi^{v}, \quad \Omega=\omega^{h}+\tau^{v}, \quad \Omega^{\prime}=\omega^{h}-\tau^{v} \tag{2.8}
\end{equation*}
$$

one obtains

$$
\begin{align*}
& G \circ F \times F=G, \quad G^{\prime} \circ F \times F=G^{\prime} \\
& \Omega \circ F \times F=\Omega, \quad \Omega^{\prime} \circ F \times F=\Omega^{\prime} \\
& G \circ J \times J=G \circ J^{\prime} \times J^{\prime}=(g \circ f \times f)^{h}+(\psi \circ \varphi \times \varphi)^{v} \\
& G^{\prime} \circ J \times J=G^{\prime} \circ J^{\prime} \times J^{\prime}=(g \circ f \times f)^{h}-(\psi \circ \varphi \times \varphi)^{v} \tag{2.9}\\
& \Omega \circ J \times J=\Omega \circ J^{\prime} \times J^{\prime}=(\omega \circ f \times f)^{h}+(\tau \circ \varphi \times \varphi)^{v} \\
& \Omega^{\prime} \circ J \circ J=\Omega^{\prime} \circ J^{\prime} \times J^{\prime}=(\omega \circ f \times f)^{h}-(\tau \circ \varphi \times \varphi)^{v}
\end{align*}
$$

Hence we have
Theorem 2.2. Let D be a linear connection on ξ, f and $\psi(1,1)$ tensor fields on M resp. ξ, g and $\psi(0,2)$-tensor fields on M, resp. ξ and $\omega=g \circ I \times f, \tau=\psi \circ I \times \varphi$. Then, the quadruple $\left(F, J, J^{\prime}, G\right)$, given
by (2.4), (2.6) and (2.7), determines on E a Riemannian apbc-structure, with the associated metric G^{\prime} and 2 -forms Ω, Ω^{\prime}, iff (f, g) and (φ, ψ) are almost-Hermitian structures on M, resp. ξ and ω, τ are theirs associated 2-forms.

Hence the structures $F, J, J^{\prime}, G, G^{\prime}, \Omega, \Omega^{\prime}$ satisfy all the conditions of compatibility from the table (1.5).
3. The integrability of the structures F, J, J^{\prime} and Ω, Ω^{\prime}. For the Nijenhuis tensor fields of F, J and J^{\prime} we obtain

$$
\begin{align*}
& N_{F}\left(X^{h}, Y^{h}\right)=-4 \gamma R_{X Y}^{D}, \quad N_{F}\left(X^{h}, u^{v}\right)=N_{F}\left(u^{v}, v^{v}\right)=0 ; \tag{3.1}\\
& N_{J}\left(X^{h}, Y^{h}\right)=N_{f}(X, Y)^{h}-\gamma\left(R_{f X f Y}^{D}-R_{X Y}^{D}-\varphi \circ\left(R_{f X Y}^{D}+R_{X f Y}^{D}\right)\right), \\
& N_{J}\left(X^{h}, u^{v}\right)=\left(D_{f X} \varphi-\varphi \circ D_{X} \varphi\right)(u)^{v}, \quad N_{J}\left(u^{v}, v^{v}\right)=0 ; \\
& N_{J^{\prime}}\left(X^{h}, Y^{h}\right)=N_{f}(X, Y)^{h}-\gamma\left(R_{f X f Y}^{D}-R_{X Y}^{D}+\varphi \circ\left(R_{f X Y}^{D}+R_{X f Y}^{D}\right)\right), \\
& N_{J^{\prime}}\left(X^{h}, u^{v}\right)=\left(D_{f X} \varphi+\varphi \circ D_{X} \varphi\right)(u)^{v}, \quad N_{J^{\prime}}\left(u^{v}, v^{v}\right)=0 .
\end{align*}
$$

From here it follows:
Proposition 3.1. 1) The ap-structure F is integrable iff. $R^{D}=0$.
2) The ac-structure J is integrable iff

$$
\begin{align*}
& N_{f}=0, \quad R_{f X f Y}^{D}-R_{X Y}^{D}-\varphi \circ\left(R_{f X Y}^{D}+R_{X f Y}^{D}\right)=0, \tag{3.2}\\
& D_{f X f}-\varphi \circ D_{X} \varphi=0 .
\end{align*}
$$

3) The ac-structure J^{\prime} is integrable iff

$$
\begin{align*}
& N_{f}=0, \quad R_{f X f Y}^{D}-R_{X Y}^{D}+\varphi \circ\left(R_{f X Y}^{D}+R_{X f Y}^{D}\right)=0, \tag{3.3}\\
& D_{f X} \varphi+\varphi \circ D_{X} \varphi=0 .
\end{align*}
$$

4) The $a c$-structures J and J^{\prime} are simultaneously integrable iff

$$
\begin{equation*}
N_{f}=0, \quad R_{f X f Y}^{D}=R_{X Y}^{D}, \quad D \varphi=0 . \tag{3.4}
\end{equation*}
$$

5) The $a p b c$-structure $\left(F, J, J^{\prime}\right)$ is integrable iff

$$
\begin{equation*}
N_{f}=0, \quad D \varphi=0, \quad R^{D}=0 . \tag{3.5}
\end{equation*}
$$

For the exterior differential of Ω and Ω^{\prime}, we obtain

$$
\begin{aligned}
& d \Omega\left(X^{h}, Y^{h}, Z^{h}\right)=d \omega(X, Y, Z)^{v}, \\
& 3 d \Omega\left(u^{v}, Y^{h}, Z^{h}\right)=\gamma\left(\tau(u) \circ R_{X Y}^{D}\right) \\
& 3 d \Omega\left(u^{v}, v^{v}, Z^{h}\right)=D_{Z} \tau(u, v)^{v}, \quad D \omega\left(u^{v}, v^{v}, w^{v}\right)=0 ; \\
& d \Omega^{\prime}\left(X^{h}, Y^{h}, Z^{h}\right)=d \omega(X, Y, Z)^{v}, \\
& 3 d \Omega^{\prime}\left(u^{v}, Y^{h}, Z^{h}\right)=-\gamma\left(\tau(u) \circ R_{X Y}^{D}\right), \\
& 3 d \Omega^{\prime}\left(u^{v}, v^{v}, Z^{h}\right)=-D_{Z} \tau(u, v)^{v}, \quad D \omega^{\prime}\left(u^{v}, v^{v}, w^{v}\right)=0 .
\end{aligned}
$$

Hence, it follows from here
Proposition 3.2. The almost symplectic structures Ω and Ω^{\prime} are simultaneously integrable and namely iff

$$
\begin{equation*}
d \omega=0, \quad D \tau=0, \quad R^{D}=0 \tag{3.7}
\end{equation*}
$$

From the Propositions 3.1 and 3.2 it results
Theorem 3.1. All the structures $F, J, J^{\prime}, \Omega, \Omega^{\prime}$ are integrable iff

$$
\begin{equation*}
N_{f}=0, \quad d \omega=0, \quad D \varphi=0, \quad D \psi=0, \quad R^{D}=0, \tag{3.8}
\end{equation*}
$$

i.e. iff the structure (f, g) on M is Kahlerian, the structure (φ, ψ) on ξ is covariant constant and the connection D on ξ is flat.

In this case we obtains on E :

1) A Riemannian local decompozable structure (F, G), with the associated pseudo-Riemannian local decompozable structure $\left(F, G^{\prime}\right)$.
2) A symplectic local product structure (F, Ω), with the associated symplectic structure Ω^{\prime}.
3) Two Kählerian structures $(J, G),\left(J^{\prime}, G\right)$, with the associated symplectic structures Ω, Ω^{\prime} respectively.
4) Two indefinite Kählerian structures $\left(J, G^{\prime}\right),\left(J^{\prime}, G^{\prime}\right)$ with the associated symplectic structures Ω^{\prime}, Ω respectively.
4. Compatible connections with the Riemannian $a p b c$-structure $\left(F, J, J^{\prime}, G\right)$

Definition 4.1. A connection \mathcal{D} on E is compatible with the Riemannian apbc-structure $\left(F, J, J^{\prime}, G\right)$ iff

$$
\begin{equation*}
\mathcal{D} F=\mathcal{D} J=\mathcal{D} J^{\prime}=\mathcal{D} G=0 . \tag{4.1}
\end{equation*}
$$

Then one has also

$$
\begin{equation*}
\mathcal{D} G^{\prime}=\mathcal{D} \Omega=\mathcal{D} \Omega^{\prime}=0 \tag{4.2}
\end{equation*}
$$

We are interested in certain particular compatible connections on E, which are related with some connections on M and ξ. To a pair (∇, D) of connections on M and ξ one associates a connection \mathcal{D} on E, called the diagonal lift of the pair (∇, D), (see, [4]), given by

$$
\begin{equation*}
\mathcal{D}_{X^{h}} Y^{h}=\left(\nabla_{X} Y\right)^{h}, \quad \mathcal{D}_{X^{h}} u^{v}=\left(D_{X} u\right)^{v}, \quad \mathcal{D}_{u^{v}} X^{h}=\mathcal{D}_{u^{v}} v^{v}=0 \tag{4.3}
\end{equation*}
$$

For the non-vanishing components of the torsion \mathcal{T} and the curvature \mathcal{R} of the connection \mathcal{D}, we have

$$
\begin{align*}
& \mathcal{T}\left(X^{h}, Y^{h}\right)=T^{\nabla}(X, Y)^{h}+\gamma R_{X Y}^{D}, \mathcal{R}_{X^{h} Y^{h}} Z^{h}=\left(R_{X Y}^{\nabla} Z\right)^{h} \\
& \mathcal{R}_{X^{h} Y^{h}} u^{v}=\left(R_{X Y}^{D} u\right)^{v} \tag{4.4}
\end{align*}
$$

For the covariant derivative of the tensors $F, J, J^{\prime}, G, G^{\prime}, \Omega, \Omega^{\prime}$ one obtains

$$
\begin{array}{ll}
\mathcal{D} F=0 ; & \\
& \mathcal{D}_{X^{h}} J=\left(\nabla_{X} f\right)^{h}+\left(D_{X} \varphi\right)^{v}, \mathcal{D}_{u^{v}} J=0 \\
& \mathcal{D}_{X^{h}} J^{\prime}=\left(\nabla_{X} f\right)^{h}-\left(D_{X} \varphi\right)^{v}, \mathcal{D}_{u^{v}} J^{\prime}=0 \\
& \mathcal{D}_{X^{h}} G=\left(\nabla_{X} g\right)^{h}+\left(D_{X} \psi\right)^{v}, \mathcal{D}_{u^{v}} G=0 \\
& \mathcal{D}_{X^{h}} G^{\prime}=\left(\nabla_{X} g\right)^{h}-\left(D_{X} \psi\right)^{v}, \mathcal{D}_{u^{v}} G^{\prime}=0 \\
& \mathcal{D}_{X^{h}} \Omega=\left(\nabla_{X} \omega\right)^{h}+\left(D_{X} \tau\right)^{v}, \mathcal{D}_{u^{v}} \Omega=0 \\
& \mathcal{D}_{X^{h}} \Omega^{\prime}=\left(\nabla_{X} \omega\right)^{h}-\left(D_{X} \tau\right)^{v}, \mathcal{D}_{u^{v}} \Omega^{\prime}=0
\end{array}
$$

From here it follows

Proposition 4.1. If \mathcal{D} is the diagonal lift on E of the pair of connections (∇, D) on M and ξ, then

1) $\mathcal{D} F=0$ always,
2) $\mathcal{D} J=\mathcal{D} J^{\prime}=0$ iff $\nabla f=D \varphi=0$,
3) $\mathcal{D} G=\mathcal{D} G^{\prime}=0$ iff $\nabla g=D \psi=0$,
4) $\mathcal{D} \Omega=\mathcal{D} \Omega^{\prime}=0$ iff $\nabla \omega=D \tau=0$.
5) \mathcal{D} is compatible with the Riemannian $a p b c$-structure $\left(F, J, J^{\prime}, G\right)$ on E, iff ∇ is compatible with the structure (f, g) on M and D is compatible with the structure (φ, ψ) on ξ.

Now, let ∇ be the Levi-Civita connection of g and D a connection on ξ, that is compatible with φ and ψ (see [3]). In this case, we obtain

$$
\begin{align*}
\mathcal{D} F=0 ; & \mathcal{D}_{X^{h}} J=\mathcal{D}_{X^{h}} J^{\prime}=\left(\nabla_{X} f\right)^{h}, \\
& \mathcal{D}_{u^{v}} J=\mathcal{D}_{u^{v}} J^{\prime}=0, \mathcal{D} G=\mathcal{D} G^{\prime}=0, \\
& \mathcal{D}_{X^{h}} \Omega=\mathcal{D}_{X^{h}} \Omega^{\prime}=\left(\nabla_{X} \omega\right)^{h}, \mathcal{D}_{u^{v}} \Omega=\mathcal{D}_{u^{v}} \Omega^{\prime}=0 ; \tag{4.7}\\
& \mathcal{T}\left(X^{h}, Y^{h}\right)=\gamma R_{X Y}^{D}, \mathcal{R}_{X^{h} Y^{h}} Z^{h}=\left(R_{X Y}^{\nabla} Z\right)^{h}, \\
& \mathcal{R}_{X^{h} Y^{h}} u^{v}=\left(R_{X Y}^{D} u\right)^{v} .
\end{align*}
$$

From here we obtain
Theorem 4.1. If ∇ is the Levi-Civita connection for g on M and D a connection compatible with φ and ψ on ξ, then the diagonal lift \mathcal{D} of the pair (∇, D) is compatible with the Riemannian apbc-structure $\left(F, J, J^{\prime}, G\right)$ iff $\nabla f=0$, i.e. the structure (f, g) on M is Kahlerian. Further, \mathcal{D} coincide with the Levi-Civita connection of G, i.e. $\mathcal{T}=0$, iff we have also $R^{D}=0$, hence the connection D on ξ is flat.

In this case, the structures $F, J, J^{\prime}, \Omega, \Omega^{\prime}$ are integrable and one obtains the results of the Theorem 3.1.

Another important particular case is that in which (f, g) is a Hermitian structure on M, ∇ is the Hermitian connection of the structure (f, g) [5] and D is a connection on ξ, that is compatible with φ and ψ. Then, one has

$$
\begin{equation*}
N_{f}=0, \nabla f=\nabla g=0, T^{\nabla}(f X, Y)=T^{\nabla}(X, f Y), D \varphi=D \psi=0 \tag{4.8}
\end{equation*}
$$

We want to know, in this case, when (J, G) is a Hermitian structure on E and the diagonal lift \mathcal{D} of the pair (∇, D) is the Hermitian connection for this structure. From (4.8) and Proposition 3.1 it follows $N_{J}=0$ iff

$$
\begin{equation*}
R_{f X f Y}^{D}-R_{X Y}^{D}-\varphi \circ\left(R_{f X Y}^{D}+R_{X f Y}^{D}\right)=0 \tag{4.9}
\end{equation*}
$$

After that from (4.7) one obtains that the diagonal lift \mathcal{D} of the pair (∇, D) is the Hermitian connection for (J, G) iff

$$
\begin{equation*}
R_{f X Y}^{D}=\mathcal{R}_{X f Y}^{D} \tag{4.10}
\end{equation*}
$$

From (4.9) and (4.10) it follows

$$
\begin{equation*}
R_{f X Y}^{D}=\varphi \circ R_{X Y}^{D} \tag{4.11}
\end{equation*}
$$

Similarly, considering the same problem for the structure $\left(J^{\prime}, G\right)$, we obtain

$$
\begin{equation*}
R_{f X Y}^{D}=-\varphi \circ R_{X Y}^{D} \tag{4.12}
\end{equation*}
$$

Finally, we have
Theorem 4.2. If ∇ is the Hermitian connection for a Hermitian structure (f, g) on M, D a connection on ξ compatible with a Hermitian structure (φ, ψ) on ξ and $\left(F, J, J^{\prime}, G\right)$ is the Riemannian apbc-structure on E, obtained by lifting (f, g) and (φ, ψ) with the help of D, then:

1) The structure (J, G), (resp. $\left.\left(J^{\prime}, G\right)\right)$ on E is Hermitian and the diagonal lift \mathcal{D} of the pair (∇, \mathcal{D}) is the Hermitian connection for this structure, iff $R_{f X Y}^{D}=\varphi \circ R_{X Y}^{D}$, (resp. $\left.R_{f X Y}^{D}=-\varphi \circ R_{X Y}^{D}\right)$.
2) The structures (J, G) and $\left(J^{\prime}, G\right)$ on E are simultaneously Hermitian and the diagonal lift of the pair (∇, D) is their Hermitian connection iff $R^{D}=0$.

In the last case, $\mathcal{T}=0$ and so \mathcal{D} coincides with the Levi-Civita connection of G. Hence the structures $F, J, J^{\prime}, \Omega, \Omega^{\prime}$ are integrable and so one obtains again the results of the Theorem 3.1.

REFERENCES

1. Bonome, A.; Castro, R.; Garcia-Rio, E.; Hervella, L.M.; Matsushita, Y. Almost complex manifolds with holomorphic distributions, Rendiconti di Matematica, Seria VII, Volume 14, Roma (1994), 567-589.
2. Cruceanu, V. - Almost product bicpmplex structures on manifolds, An. St. Univ. "Al.I. Cuza" Iasi, , tom LI, s.I, Matematică, 2005, f1, 99-118.
3. Cruceanu, V. - Connections compatibles avec certaines structures sur un fibré vectoriel banachique, Czechoslovak Math. J. 24(99), 1974, 126-142.
4. Cruceanu, V. - A new definition for certain lifts on a vector bundle, An. St. Univ. "Al.I. Cuza", Iaşi, tom XLII, s.I, 42(1996), 59-72.
5. Kobayashi, Sh.; Nomizu, K. - Foundations of Differential Geometry, vol. I, II, Intersci. Publ. New York, 1963, 1973.
6. Libermann, P. - Sur le probleme d'equivalence de certaines structures infinitesimales, Ann. Mat. Pure Appl. 4(36), 1954, 27-120.

Received: 22.II.2007
"Al.I. Cuza" University,
Faculty of Mathematics,
Bd. Carol I, no 11, 700506, Iaşi,
ROMANIA

[^0]: *This paper was partially supported by CNCSIS, Romania, Grant 1158/2007.

