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1. Introduction. Continuing the study from [5], concerning some lifts for tensor fields and linear
connections on a vector bundle, in this paper we shall deal with the particular case of the lifts on
the tangent bundle.

The total space of the tangent bundle is a manifold naturally endowed with a very rich geome-
trical structure and that is why it presents a special interest for Differential Geometry, Analytical
Mechanics and Theoretical Physics. See the recent monograph [12] by R. Miron and M. Anastasiei
and the references therein.

Starting from a natural and unitary point of view, we obtain new definitions, different from
those introduced by K. Yano and S. Ishihara [15], for the vertical and horizontal lifts and we give
simple geometrical characterizations for the considered lifts.

1. d-Tensor fields and certain lifts. We shall work in the category of C>*~manifold. Let M be
a connected and paracompact m-dimensional manifold, F (1) the ring of real functions, 77(M)
the F (M )-module of (p, ¢)-tensor fields and 7 (M) the F(M)-bigraded tensor algebra of M. Let
be then (T'M, 7, M) the tangent bundle of M, VT M = Ker T'w the vertical subbundle of T(TM)
and VT M = Im T*7 the subbundle of T*(T'M), dual orthogonal to VT M. Denote by WTM the
quotient bundle of T(T'M) by VTM and by W+TM the quotient bundle of T*(TM) by VT M.
We obtain the following short exact sequences of vector bundles over the manifold TM

(1) 0— VTM -5 T(TM) 25 WTM — 0,
(2) 0 —s VATM -2 T (TM) =% WATM — 0,

where ¢, j and p, ¢ are the canonical injections and projections, respectively. Let be, in the local
chart (U, p) and (x=1(U), ®) on M and TM, the local coordinates (z?), (z, '), respectively and
the pairs of corresponding dual bases (8;; '), (9;, d;; i, dY), where 8; = 9/9z', 9; = 8/dy', d' = da*,
d'=dy', i,j,k =1,2,....,m. For VTM, V-TM,WTM and W+TM, we obtain, respectively, the
natural bases (9;), (d*), (8; = p(8;)), (d' = q(d")). The exact sequences (1) and (2) suggest us to
consider the following natural class of ”tensor fields” on the manifold TM.

Definition 1.1. A distinguished, or shortly, a d-tensor field of type (p,q,r,s), on the tangent
manifold TM, is a section T of the vector bundle ® WTM ®" VI'M ®4V+TM ®° W+TM over
TM.
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The local expression for such a tensor field is

(3) T(z) = ir-ipki ke (z,9)8;, ® - Oy @ d @ dn Q- ®db.
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We shall denote by ’Z_;?é’(TJ\[) and T (TM), the F(TM)-module of d-tensor fields of type
(p,q,r,s) and the corresponding fourgraded tensor algebra on T'Af. The coordinates of d-tensor
fields of types (0,0, p,q), (p,q,0,0), (0,q,p,0) and (p,0,0, ¢) have the same law of transformation
as those of tensor fields of type (p,q) on M and so we can consider the following lifts

Definition 1.2. The vw', wvt, vot and ww*-lift for a tensor field ¢t € TF(M), given by

4) t =it z’()@-l@mdﬁ@---@d@

J1--Jq
is the d-tensor field T of type (0,0,p,q), (p,¢,0,0), (0,¢,p,0) and (p, 0,0, ¢) respectively on TM,
given by (3), where

(5) T @ y) = 6.5 (),

J1--Jq ]1 -Jg

The ring F (M) being isomorphic with the subring F(M) = {for | f € F(M)} of F(T M), it may
be considered as a subring of F(T'M). So the previous hfts give four embeddings of the bigraded
tensor algebra 7 (M) in the fourgraded d-tensor algebra 7 (M). We remark that the bigraded
subalgebra of d-tensor fields on TM of type (0,q,p,0), p,q € IN is also a subalgebra of the tensor
algebra T (T M). So, by the vvt-lift, the tensor algebra 7 (M) is embedded naturally in the tensor
algebra 7(T'M). The d-tensor fields of type (0,¢,p,0) on TM were considered in many papers
with different names: M-tensors [13],[12], Finsler tensors [11], d-tensors [12], semibasic tensors [3]
ete.

For example, if I is the identical automorphism of the bundle TM, then ¢ = (I)**" is the
natural almost tangent structure on the manifold TM with the local expression ¢ = 8; ® d'.

Setting for each 1-form w € 7;(M), given locally by w(z) = w;(z)d",

(7) 1(w)(2) = wil2)y',

where z = (z,y), we obtain a class of functions on TM with the following important property.
For two vector fields A and B on TM we have A = B if and only if A(yw) = B(yw), for each
w € T(M). The operator v may be extended to tensor fields ¢ € T, (M) by

‘L'l‘L

8) (T8 @ -l Qd @ @d)(z) =yt (2)0, @ @8, @@ @ di.

Jji--Jq JI1---Jq

In particular, for ¢ = I, we get the canonical (or Liouville) vector field K = v(I) on the manifold
TM, given by

(9) K(w) =, Ywe Ti(M),
with the local expression K(z) = y/d;.

Definition 1.3. A wvertical vector field on the manifold T'M is a section of the vertical subbundle
VTM.

So a vertical vector field is a d-tensor field of type (0,0,1,0) and it has the local expression
A(z) = AY(z,y)0;.

Definition 1.4. The vertical lift for a vector field X € 7*(M) is the vector field X¥ on TM
given by

(10) X'(w)=w(X)om, Ywe T (M).
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Locally, if X = X?(z)d;, then X¥ = X*(z)d;. For X = 8; we obtain
(11) ) =8, i=12 .,m.

Hence, for a vector field on M, the vertical lift coincides with the vv*-lift. We remark the pro-
perties

(12) X9, Y] =0, LgX'=-X", VXY € THM),
where L is the Lie derivation and K the canonical vector field.

Definition 1.5. A horizontal 1-form on the manifold TM is a 1-form which vanishes on every
vertical vector field.

Hence, a horizontal 1-form on TM is a section in the subbundle VXTM and it has the local
expression a(2) = oy(z, y)d'.

Definition 1.6. The horizontal lift of a 1-form & € 7;(M) is the 1-form on TM given by
(13) Wt =T (w).

If w = w;(z)d’, then w"(z) = w;(z)d’. For w = d' we get

(14) (Y =d, i=1,2,..,m.

Hence for a 1-form on M, the horizontal lift coincides with the vv*-lift.

Remark 1.1. The horizontal 1-forms and the horizontal lift for 1-forms coincide respectively with
the vertical 1-forms and the vertical lifts for 1-forms considered by K. Yano and S. Ishihara [15].

2. Normalization for the vertical foliation. TM being a manifold endowed with the vertical
foliation, it is convenient for its study to consider a normalization of the foliation, that is, a
distribution on 7'M supplementary to the vertical one. Such a distribution will be called horizontal
distribution and denoted by HT M. With HT M will be denoted also the corresponding subbundle
of T(TM) and we shall call it the horizontal subbundle. A normalization can be defined, for
example, by a right splitting of the exact sequence (1), that is, a morphism N : WT'M — T(TM)
so that po N = Iyyrps. Then putting HTM = N((WTM), we obtain an embedding of WT M, as

a supplementary subbundle for VT M. Setting locally 6; = N(9;) we obtain
(15) 6, = 8; — N (z,9)0;, i=1,2,...,m

and it follows that (&;), ¢ = 1,2,...,m is a local basis for HT M. The splitting N is also called
nonlinear connection. The name is justified by the fact that if we have a linear connection V on
M, then putting locally

16) Vo, 0k = IV (2)d; and N!(z,y) = r? (z)yF,
ik J 1 ik

the relations (15) give a normalization N on TM. But generally, for a normalization N, the local
functions N/ (z,y) are not linear in y.

Definition 2.1. A horizontal vector field on the manifold TM, with respect to normalization
N, is a section on the horizontal subbundle HT M. Locally, a horizontal vector field is given by
A(z) = Az, y)6;.



Definition 2.2. The horizontal lift of a vector field X € T*(M) is the horizontal vector field X"
on TM which satisfies the condition Tw(X") = X. Locally, if X = X(2)d;, then X"(z) = X*(z)d;.
For X = 0;, we obtain

(17) (O =46;, i=1,2,....,m.
It is not difficult to prove

Proposition 2.1. If N is the normalization defined by a linear connection V on M, then the
horizontal lift X", for X € T*(M), is characterized by

(18) X'w) =y(Vxw), Ywe T (M).

Proposition 2.2. A normalization N on TM is induced by a linear connection V on M if and
only if

(19) ' LxXM=0, VX e T'M).

Proof. We obtain locally
; 6‘7\
[:[(Xh ( N y]>

and N} being of class C> on T'M, the condition (19) is equivalent with (16),. In this case one has
(20) (X" V" = [X,Y)" = yRxy, VX,Y € TH(M),
where R is the curvature of the linear connection V.

Remark 2.1. In [15], for a linear connection V on M, given locally by (16);, the horizontal lift,
for a vector field X € T*(M), is defined by X"(z) = X*(z)(9; — I“{z(:r)ykaj) That is, in [15],
the horizontal lift of X, with respect to V, coincides with the horizontal lift of X given by the
Definition 2.1, with respect to the connection transposed to V, i.e. 'V = V—TV, where TV is the
torsion of V. Evidently, the definition in [15] complicates the things in many questions concerning
the horizontal lift. This deficience was deleted in [6], but the old definition is still used by certain
authors.
Now, we obtain, for the horizontal lift of a 1-form w € 77 (M), the following characterization.

Proposition 2.3. The horizontal lift for the 1-form w on M, is the 1-form w" on TM given by
(21) WX =0, XM =w(X)om, VX € THM).

Definition 2.3. A wvertical 1-form on TM is a 1-form which vanishes on every horizontal vector
field.

Hence, a vertical 1-form is a section in the subbundle H*TM C T*(TM), the orthogonal dual
of HTM. Locally, for such a 1-form one has a(z) = a;(z,y)(d" + Nj(z, y)d).

Definition 2.4. The vertical lift of a 1-form w on M, with respect to a normalization N, is the
1-form w? on TM given by

(22) VXY = w(X) o w(XM) =0, YX € T'(M).
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If w = wi(z)d’, then w(z) = w(x)(d' + Ni(z,y)d). For w = d* we obtain
(23) O =(d) =d +Nid, i=1,2,..m.
Hence the 1-forms (61), i=1,2,...,m generate locally the subbundle H-TM.

Remark 2.2. The vertical 1-forms and the vertical lifts for 1-forms coincide with the horizontal
1-forms and the horizontal lifts for 1-forms considered by K. Yano and S. Ishihara [15].

From the previous considerations it results that the following systems of local sections (;, 81)
and (d’, §") represent the dual bases adapted to the normalization N and the natural charts on TM.

These bases are very convenient in the study of TM. From the transformation laws of natural
and adapted bases one obtains isomorphisms between VT M and WTM with HT M and between
VATM and WATM with H*TM, which evidently depend on the normalization N.

3. N-decomposable tensor fields and N-lifts. A normalization N of the vertical foliation
determines a direct sum decomposition of the bundles T(T'M) and T*(T M),

(24) T(TM)=HTM & VTM, T*(TM) = V*TM & H*TM.

Denoting by H and V' the horizontal and the vertical projectors, associated to these decom-
positions, we obtain for A € TY(TM) and a € T;,(TM)

(25) A=HA+VA a=Ha+Va=aoH+aoV.

From (25) and the Definitions 2.3 and 1.5 it follows that the duals (VT M)* and (HTM)* are
isomorphic with H+*TM and VT M respectively.

Definition 3.1. A N-decomposable tensor field of type (p,q,r,s) on the manifold TM, with
respect to the normalization NV, is a section of the vector bundle @ HTM ®" VT M ®?V+TM ®°
HTM.

We denote by 7F7(TM,N) and T(TM,N) the F(TM)-module of N-decomposable tensor
fields of type (p,q,7,s) and the corresponding fourgraded tensor algebra on TM. Considering a

tensor field T € TP+T(T M) as a F(TM)-multilinear mapping T : Ty(TM)P*" x TYTM)*"* —

q+s

F(TM), it follows

Proposition 3.1. A tensor field Te?;’l*{(TM) is N-decomposable of type (p,q,r, s) if and only if

(26) T=To(H? x V" x HI x V).

Such a tensor field has the local expression in adapted bases

(27) T(z) = T8 ¥ (0,)0, @ O @ - @84 ® - @ 5.

J1.--Jqli.. s

From (24) and (26) it results that each tensor field T’ € Tji(TA[ ) may be decomposed in 2¢+7
N-decomposable tensor fields of type (p,q,r,s) with p+r =1, ¢ + s = j. Therefore we obtain for
each i,7 € IN*,

THTM) = @5 TF/(TM,N)

ptr=i
at+s=j
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and so, the bigraded algebra 7 (T'M) can be replaced by the fourgraded algebra 7 (T'M, N).

Definition 3.2. The N-lift with respect to normalization N, of a d-tensor field T of type (p, ¢, 7, 5)
on T'M, given by (3), is the N-decomposable tensor field T" of the same type, given by (27), where

(28) Tﬁ;izfz (z,y) = 7}1114..3',[,@11...4; (z,9).

Evidently, the N-lift is an isomorphism between the fourgraded algebras 7 (T M) and 7 (TM, N).
In the following table we consider certain important classes of N-decomposable tensor fields
of type (p, q, 7, s) on the manifold TM.

Name C?gg%icgi_ Local expression
Vertical | p=g=0 |T=T;" "0k ® - @0, ®"@---®d"
4.4 1 - .
(29) Horizontal |r=s=0 |T= ]“;11]’;5” ® @0, ® @ d
I\m/giit;giltgl p=s=0 |T=T/* %0, @ Q0 @d"® - ®d
o p=s=0 | T=T 0,0 06,084 - @ 8

These tensor fields determine four bigraded subalgebras in the algebra 7 (TM, N), which
will be called respectively: vertical (VT (T'M,N)), horizontal (HT (T M, N)), vertical-horizontal
(VHT(TM,N)) and horizontal-vertical (HVT (T M, N)) subalgebras. We remark that the verti-
cal, horizontal and horizontal-vertical subalgebras depend on the normalization N. The vertical-
horizontal subalgebra is independent on the normalization and coincides with the subalgebra of
T(TM) formed by the d-tensor fields of type (0,¢,7,0), ¢, € IN. Since (VTM)* is naturally
isomorphic with H+T M, it follows that the N-lift determines an isomorphism between the tensor
algebra of VT'M and the subalgebra V7 (T M, N) of the vertical tensor fields on TM, with respect
to N. Then, (HTM)* being isomorphic with V+T M, the N-lift determines an isomorphism be-
tween the tensor algebra of HT M and the subalgebra H7 (T'M, N) of the horizontal tensor fields
on TM, with respect to the normalization N.

Definition 3.3. The wvertical (v), horizontal (h), vertical-horizontal (vh) and horizontal-vertical
(hv)-lifts of the module 7(M ), with respect to the normalization N on TM, are the vw*, wuv*,

vut and ww*-lifts composed respectively, with the N-lift, that is:
(30) v=Nowvw’, h=Nowvt, vh=Now", hv=Nowuw".

Proposition 3.2. The vertical, horizontal, vertical-horizontal and horizontal-vertical lifts for a
tensor field t € TP(M) are respectively the vertical, horizontal, vertical-horizontal and horizontal-
vertical tensor fields on TM, denoted by t,t", 1" " and given by

(W, ey wpy X7y oy X7) = twr, vy wp, Xuy oy Xg) 0,

thwh, L wh XP XD = twr, e wp, X1, X 0,
tvh (w?, ceey W, Xk \;’) = t{wy, oy wp, X1, .y Xg) o,

th“(wf, ceey u}z, ,ny, ceey X(;U) = t(wl, ooy Wpy )(1, Xq) o,

(31)

for every w; € T,(M) and X; € T*(M).

If the normalization N is defined by a linear connection V on M, taking into account that
LxX¥=—X"and LxX" =0, we obtain for these lifts the following characterizations.
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Proposition 3.3. A tensor field T € TF(TM) is the vertical, horizontal, vertical-horizontal
or horizontal-vertical lift of a tensor field t € TP(M), with respect to normalization N defined
by a linear connection V on M, if and only if it is a vertical, horizontal, vertical-horizontal or
horizontal-vertical tensor field respectively, which satisfies the corresponding condition

(32) LxgT = (q—pT; LgT =0; LkT = —pT; LxkT = qT.

4. Structures associated to a normalization on TM. Let N be a normalization of the
vertical foliation on the tangent manifold TM and I the identical automorphism of the tangent
bundle TA1. Using the v, h,vh and he-lifts associated to N, we obtain the well known 2], [4],
[7]-[15] and very important tensor fields of type (1,1) on TM:

V=P H=I" oc=1" r=1" F=]h_]v

33
( ) P = [hv+[rh’ J =TI _ vk,

From (31) it results, for these tensor fields, the characterizations:

V(X*)=X", V(X" =0; H(X")=0, H(X")= X" o(X*)=0,
(34) g(XM)=X" 7(X¥)=X", 7(X")=0; F(X*)=Xh F(X?)= —X*;
P(X¥)=X" P(XM)=X"; J(XM)= —X?, J(X?)= X",

For the composition of the morphisms defined by these tensor fields on the bundle TM , we obtain
the table

o VI H| o T F|P J
V V 0] o 0|-V|o| —0o
H 0 H 0 T| H| 7 T
(35) o 0 o 0| V o|V V
T T 0| H 0| -7|H|-H
F|-V| H| -0 T I11J| P
P T ol H| V| -J| I|-F
J T|—0o| H|-V|-P|F| -I

So, V and H are the vertical and horizontal projectors, ¢ is the natural tangent structure, 7 is
another almost tangent structure (the second), F and P are two almost paracomplex structures
[4] (the first and the second), and J is an almost complex structure on TM. Excepting o, all these
structures depend on the normalization N. The tensor fields, F, P and J determine together an
almost antiquaternionic structure on TM, associated to N.

The normalization N can be defined by a right or left splitting of the sequence (1) or (2), but it
can be also defined by one of the tensor fields V, H, F, P, J,7 on TM. Using the characterizations
(34) and computing the Lie derivative of these tensor fields, with respect to canonical vector field
K, we can see when the normalization N is induced by a linear connection V on M. After some
simple calculations we obtain

Proposition 4.1. Let be o the natural tangent structure and K the canonical vector field on the
tangent manifold TM. Then:



(i) A normalization N on TM can be defined by one of the tensor fields V.H,F, P, J,7 €
TXTM), which satisfy respectively the conditions:

Voo=0, 00V =0 Hoo=0, 00H =0; Foo=—o,
(36) cgoF=0; P2=1, Poo+ooP =1,
J2=—1 Joo+ooJ=1,72=0, Too+oor=1.

(ii) The horizontal distribution is given respectively by

KerV: ImH; F*={Ae THTM)|F(A) = A};

(37) P(VTM); J(VTM); Kerr =Im.

(iii) The normalization N is induced by a linear connection on M if and only if one has,
respectively

(38) [,KV:O; E]{HZO; EKF:O‘, £AP:J [:AJ:P L:KT:T.

Let ¢ be a tensor field of type (1,1) on TM. Setting
\Pf = f? 99‘4 = ¢(A)7 pa = aop, ¢T<ala “'7‘417 ) = T(lﬁpal S‘/)Ala )

for f € F(TM), A; € THTM), o; € TL(TM), T € TP(TM), it results that ¢ defines an
endomorphism of the algebra 7 (TM). Considering then ¢ equal with one of the tensor fields
V,H, 0,7, P,J and taking into account the relations (34), we obtain

Proposition 4.2. The subalgebras VT (TM,N), HT (TM,N), VHT (TM,N) and HVT (T M, N)
have the following properties:

VI(TM,N)=ImV =Ker H, HT(TM,N)=ImH = KerV,

VHT(TM,N) =Imo =Kero, HVT(TM,N)=Im7=Kerr,
P(VT(TM,N))=HT(TM,N), P(VHT(TM,N))= HVT(TM,N),
JWVT(TM,N))=HT(TM,N), J(VHT(TM,N))= HVT(TM,N).

(39)

Remark 4.1. This proposition gives a new justification for the definition adopted by us for the
vertical and horizontal tensor fields on TM and for the corresponding lifts of tensor fields on
M. The definitions given by K. Yano and S. Ishihara in [15], for the vertical and the horizontal
lifts, are not justified, firstly, because the corresponding tensor fields are not generally, vertical
or horizontal respectively. Actually the vertical lift of K. Yano and S. Ishihara coincides with
our vh-lift and it is independent on the normalization. After that, the horizontal lift of K. Yano
and S. Ishihara [15] is an artificial and complicated construction. It has been used in the form of
K. Yano and S. Ishihara or easily modified (as we have seen for vector fields), but only for some
particular types of tensor fields for which it may be expressed simply with the lifts considered by
us. The complet lift, defined by K. Yano and S. Kobayashi [14] is also complicated, but it is a
natural and useful construction which is independent of the normalization and is strongly related
with our vh-lift.

5. Derivation laws in the algebra of d-tensor fields.

Definition 5.1. A d-connection on the manifold TM, with respect to a normalization N, is
a linear connection on TM which induces a law of derivation in the algebra of d-tensor fields

T(TM).

[S)
3
i



Proposition 5.1. A linear connection D on TM is a d-connection if and only if it preserves by
parallel transport the vertical subbundle.

The proof is the same as in [5]. It follows from here

Proposition 5.2. A connection on the manifold TM is a d-connection if and only if it satisfies
one of the following conditions:

(40) (i) poDaoci=0; (ii)ocoDsoo=0, YAcTHTM).

6. Derivation laws in the algebra of N-decomposable tensor fields.

Definition 6.1. A vertical- horizontal (vh)-connection on the manifold T'M, with respect to a
normalization NV, is a linear connection on T'M which induces a law of derivation in the vertical-
horizontal subalgebra VHT (TM,N).

It is easy to prove

Proposition 6.1. A connection D on TM is a vh-connection if and only if it satisfies one of the
following conditions:

(41) (i) D preserves the vertical subbundle,
(i) coDyo0=0, (i) HoDaoV =0, VA TYTM).

Definition 6.2. A horizontal-vertical (hv)-connection on TM, with respect to a normalization

N, is a linear connection on TM, which induces a law of derivation in the horizontal-vertical

subalgebra HVT (T'M, N).

We obtain

Proposition 6.2. A linear connection D on TM is a hv-connection if and only if it satisfies one
of the following conditions:

(i) D preserves the horizontal subbundle,
(i) roDsor=0, (i) VoDsoH =0, YAETHTM).

Remark 6.1. A vh-connection is independent on the normalization and it is in the same time a
d-connection. A hv-connection depends on the normalization N.

Let D be a linear connection on TM which preserves the vertical subbundle VTM and
AeT(TM), Be HTHTM,N), a € VT,(TM,N). We obtain (Dsa)(B) = —a(D4B) and so,
Dya is a vertical 1-form if and only if DB is a horizontal vector field. Therefore, a connection
D on TM induces a law of derivation in the subalgebra of vertical tensor fields (i.e. it is vertical)
if and only if it induces a law of derivation in the subalgebra of horizontal tensor fields (i.e. it is
horizontal). But in this case it induces a law of derivation in the whole algebra of N-decomposable
tensor fields. Hence it is justified the following

Definition 6.3. A N-decomposable connection, with respect to a normalization N, is a linear con-
nection D on T M, which induces a law of derivation in the fourgraded algebra of N-decomposable

tensor fields 7 (T M, N).

From the previous considerations it follows
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Proposition 6.3. A linear connection D on the manifold TM is N-decomposable if and only if
it satisfies one of the conditions:

(i) D is in the same time a vh and a hv-connection.

(ii) D induces a law of derivation in the vertical subalgebra.
(iii) D induces a law of derivation in the horizontal subalgebra.
(iv) D is a F-connection, i.e. DF = 0.

(v) There exists a pair of connections (D, 5) on the subbundles VM and HT M, so that

(42) Dy=D,yoV+DoH, VAT (TM).

Let be N a normalization on TM, P the second almost paracomplex structure associated to
N and D a linear connection on the vertical subbundle VT'M. Then setting

(43) Dyr Y = P(DynY?), Dy» YP =0, VX,Y € T'(M),

we obtain a linear connection on the horizontal subbundle HTM. Conversely, if D is a linear
connection on HT M, then putting

(44) DYV = P(Dyn Y), DY =0, VXY € T'(M),
we obtain a linear connection on VT M. So, we get

Proposition 6.4. A N-decomposable connection on TM is uniquely determined by a linear
connection on VT M or on HT M.

It is easy to prove

Proposition 6.5. If N is a normalization on the manifold TM, then setting

DY = [XM Y], Dx. YV =0

(45) ~ ~
th Yh — P[Xh, Y’UL DXv Yh =0,

VX,Y € THTM), one obtains a pair (5, ZN)) of linear connections on VI M and HTM and by
(42) a N-decomposable connection on TM.

Definition 6.4. The N-decomposable connection D on T'M given by
(46) DY = [X" YY), Dy Y =0, DY = PIX" VY], DY =0,

will be called the canonical connection associated to the normalization N.
For its local expression, we obtain

. ONE . . . ON¢ N
(47) Dg_}ak = —ay—]g@, DaJak - 07 DdJOk = 8—ylg§j, Da‘]Ok = 0.
The torsion 7 and the curvature R of D are given by
(48) T(X"Y") = —Np(X"YM), T(X" V") =0, T(X",Y") =0,
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where Np is the Nijenhuis tensor field of P and

Rymyn Z¥ = [V[Xh Y], Z¥], Rynyn Zh = PIV[Xh, Y], Z¥),
(49) Ry Z8 = [[XP, 2, YY), Rynyn 20 = P[X", Z7], Y7,
RX'“Y" ZU - O7 RX"Y” Zh = 0

We obtain also the following useful relations

(50) Dy K = X¥, DK = [X" K],
© DV = DH = DF = DP = DJ = Do = Dr = 0.

It follows

Proposition 6.6. If D is the canonical connection associated to normalization N on TM, then
the canonical vector field K is absolute concurrent for vertical movements. It is absolute parallel
for horizontal movements if and only if N is defined by a linear connection on M.

A characterization for the canonical connection is givén by

Proposition 6.7. The linear connection D on the tangent manifold TM is the canonical connec-
tion, associated to the normalization N, if and only if it satisfies the conditions:

(51) DF =0, DP=0, ToV x H=0.

Proof. If D is the canonical connection, then the conditions are satisfied by (46) and (50).
Conversely, from DF =0, it follows that D preserves the vertical and horizontal subbundles. After
that, 7oV x H=0 gives Dy» YV — Dy X"~ [ X" Y?] = 0. But from Dx»Y?, [X" Y?] € VTY(TM),
and Dy« X" € HTY(TM, N), it follows that Dy, Y? = [X", Y] and Dy. X" = 0. Combining these
with DP = 0, it follows Dx»Y"* = P[X" Y] and Dx.Y" = 0.

If we take, in particular, the normalization N, given by a linear connection V on M, we may
set the following

Definition 6.5. The v-lift for a linear connection V on M is the canonical connection on TM
associated to the normalization N defined by V., that is, the connection D = V¥ given by

(52) YV = (VxY)', Vi Y? =0, Vi Y = (VxY)" V4. Y" = 0.
For the torsion and the curvature of V¥, we obtain

T(X"Y") = TY(X,Y)* + 1RYy, T(X*,Y*) =0,
(53) T(XY, YY) =0, RyuynZ% = (RYy 2)°,
Rxhyh Zh = (Rzyz)h, RX”Y“ = O, RXTYT = O,

where TV and RV are the torsion and the curvature of V.
The previous construction may be extended as follows.

Definition 6.6. The v-lift of a linear connection V on M, with respect to another linear con-
nections V° on M, is the Ny-decomposable connection D on T M, given by

DL, Y= (VxY)", DRY'=0,

DY, Y = (VxY), DRYh =0,

Xho

(54)

where hy is the horizontal lift corresponding to V°.

(3]
=1
=



For the torsion and the curvature of D*° we obtain

(55)

T(Xho, Yho)=TY(X,Y )" +~vRYy,

T(Xho,vv) = S(X,Y)", T(X?,Y")=0,

Ryroyr 2= (RXy Z)", Rixnoyne 2" =(RYy Z)",
Ryhoye =0, Ryeyr=0,

where § =V — V%

Remark 6.1. The "horizontal lift” for a linear connection V on M, defined by K. Yano and
S. Ishihara [15], is the wv-lift D™ of V, with respect to the normalization NO defined by the
transposed connection of V, i.e. the connection V®=V—TV. In this case we have in (55), S=T".
The denomination ”horizontal lift of V7, given in [15] for D" defined by V° =V —TV, is not
justified because generally D" does not induces a law of derivation in the horizontal subalgebra
on TM with respect to the normalization N, defined by V. After that, D" is more complicated
than D”.
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