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1. Introduction. The almost hyperproduct (ahp)-structures on a manifold were considered,
together with other important structures, by Liberman [6]. New properties of these structures
were established by Walker [9, 10]. Legrand [5], Hsu [4], Vidal and Vidal Costa [8] and others, in
the more general setting of the r-m-structures on manifolds.

In this paper, we give a new definition for an ahp-structure and we establish its equivalence
with other geometric structures. We study then the compatibility of the ahp-structures with
metrics and linear connections, their integrability and we determine two canonical connections
compatible with a metric ahp-structure. Finally, we give as example, a metric ahp-structure on
the tangent bundle, obtained by lifting a metric almost product structure off the base manifold.

2. Hyperproduct structures on a vector space

Definition 2.1. A hyperproduct (hp)-structure on a real vector space V is a triple (F,G, H) of
automorphisms of V' which satisfy the following conditions:

1) F?=G*=H*>=FoGoH =1
2) I, F,G, H are linear independent.
It results from here
3) FoG=GoF=H, GoH=HoG=F, HoF=FoH=G.

I+ F I-
Considering the projectors I} = +T, F= 5

4) Faon:GboFa7 Gapo:HbOGay HaOFb:FboHaa a:b:172

, etc., we obtain

and

5) FloGy=GioH = HioF, [10Gy=Gy0Hy= Hyo b,
FQOG1:G10H~2:H20FQ, FQOGQZGQOI{1:H10F‘2.
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From these relations and (F; + F5) o (G1 + G2) = I, it follows
FioG i+ FRoGy+ F,0G +F,0Gy=1
and setting
6) Po=Fi0Gy, Po=F0Gy Ps=F,0G, Py=F,oG,,

one obtains
4
7)Y Pa=1I, P2=Pa, PaoP3=0, a#3=1234.
a=1

Therefore, P, are independent and supplementary projectors on V. Setting then
8) Wo=Pu(V), a=1,2,3,4,

it results that W, are independent and supplementary subspaces of V| i.e.
N V=waeW,eW;aW,.

Denoting with (F*, F~), G*,G™), (H*, H™) the eigensubspaces of F, G, H corresponding to +1
and —1, it follows

10) Wy=F"NGt=G"NH"=H"NFT,
Wo=FtNG =G NH =H NF*
Wy=F"NG*=GTNH =H NF~,
Wy=F NG =G NH"=HTNF".

From here it results

1) Fr=W,eW,, F- =W W, Gt =W, & W;,
G =Wy,eW,, H- =W, e Wy, H- =W, g W;.

Setting n, = dim W,, we obtain n; + ny = dim F'*, n3 + ny = dim F~, etc., and n; + ny +
n3 +nyg = dim V. If F,G, H are paracomplex (pc)-structures, i.e. tr F = trG = tr H = 0, then
ny = no =n3 =ng =n and dimV = 4n. We remark that if two of the structures F,G, H are
paracomplex, the rested is not necessary paracomplex.

Let Q, = I — P, be the supplementary projector of P, and ¢, = 2P, — I, a = 1,2,3,4, be the
associated product structures. Denoting W, = Z W,, we obtain for the eigensubspaces of ¢,

B#a

12) ¢f =W,, o7 =W,, a=1,2,3,4.
We have also the relations

13) 2 =1, ¢a0ds=0g0da a#B=1,234, ¢od0d300,=—I,

14) F=—¢100y=0¢3004, G=—¢1003=¢00¢y, H=—p10¢s= 00 3.
We remark the useful relations

15) 4P, =+ F+G+H, AP,=I1+F -G —H,
APy=[-F+G-H, 4P,=1-F—-G+H

and
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16) F=Pi+P,—Py—P;, G=P,—Py+P,—P;, G=P,— P,~ P, + P,.

Considering on F* and F~ the product structures ¢ and ¢ given by ¢+ = Wy, o~ = W,,
Y+ = Ws, ¥~ = Wy, we obtain for G and H

17) G=g¢oFi+YoFy, H=poF —1ok,.

From the previous considerations it follows that to an hp-structure on V' we can associate the
following systems of subspaces {W,}, {Was = W, @ W5}, {Wo}, a # 8 = 1,2,3,4. We can
associate also some equivalent structures: {P,}, {¢a}, @ = 1,2,3,4, {F, ¢, ¥}, which must satisfy
certain conditions resulting from 1) and 2).

In a canonical basis for the hp-structure (F, G, H), that is formed by vectors situated in W,
a=1,2,3,4, we obtain for F, G, H the matrices

I I I

with the diagonal blocs formed by the (&)-unitary matrices of dimensions no, o = 1,2,3,4. It
follows from here that the group of automorphisms for the hp-structure (F,G, H) is isomorphic
with GL(n;,IR) x GL(ny,IR) x GL(n3,IR) x GL(ng,R).

For a metric h on V| i.e. a symmetric and nondegenerate (0, 2)-tensor, we consider the metrics

19) g1 =ho(IXI+FxF+GxG+HxH), go=g10(Fx I),
gs=g10(Gx1I), gg=gio(HxI).

It follows
20) ga o (FX F)=ga0(GxG)=ga0o(Hx H) =g, a=1,2,3,4.

Let M = {g1,¢2. 93,94} be the set of previous metrics and G = {I, F, G, H} the subgroup of
GL(V) determined by the hp-structure (F, G, H). Setting

T(g,(u,v)) =go(uxv), Vg M, u,v € g,

one obtains a right action of the group G x G on M. The elements of M are invariant to the
restriction of the action T of G X G to its diagonal subgroup.

Definition 2.2. We call the structure (F, G, H, g1) a metric hyperproduct (mhp)-structure on V'
and go, g3, g4 the associated metrics.

If h is an Euclidean metric, then g, is also Euclidean and g, g3, g4 are pseudo-Euclidean. If
F,G, H are pc-structures and h is Euclidean metric, then the structures (F, ¢1), (G, q1), (H,g1)
are Euclidean mpc-structures. Setting 3 = g1/Wa,, a = 1,2,3,4, we obtain a metric on each of
the subspaces W,. All § are Euclidean when g1 is Euclidean. The pairs (F'*,F7), (GT,G7),
(H*,H™) are then formed by orthogonal subspaces of V, with respect to all g, and W, are also
orthogonal subspaces for all g,. If g; is an Euclidean metric on V, then in an orthogonal basis on
V, formed by vectors situated in W,, we obtain

I 1 I 1

21) g1= I y §2= _J y 93 = I y 94= 7
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Hence, for an Euclidean mhp-structure (F, G, H, g1), the automorphism group is isomorphic with

O(ny, R) x O(ng, R) x O(nz,R) x O(ny, R).

Almost hyperproduct structures on a manifold. Let M be a paracompact C*-manifold,
F(M) the ring of real functions, D7 (M) the F (M) module of (r, s) tensor fields, D(M) the F(M)-
tensor algebra and Der(M) the F(M)-module of derivations for D(A).

Definition 3.1. An almost hyperproduct (ahp)-structure on M is a triple (F,G,H) of (1,1)
tensor fields, which satisfies the conditions 1) and 2) for each z € M.

All the considerations from the previous section may be extended to the tangent bundle TM.
For an ahp-structure (F,G, H) on M, we denote by F=,G*, H* the eigendistributions (or sub-
bundles of TM), corresponding to £1 and by Fy,, G4, H,, a = 1,2, the projectors of F,G, H on
F*, G*, H* respectively. We consider also the projectors P,, a = 1,2,3,4, given by 6), the
supplementary projectors Q, = I — P, and the distributions (subbundles of T'M)

22) Wo = Pa(TM), Wos = Wa @& Ws, Wa =35, Ws, a#6=1,2,3,4.

These distributions are related to the eigendistibutions of F, G, H by the relations 10) and 11)
and they will be called the distributions of the ahp-structure (F, G, H). We denote by D' (M, W)
the F(M)-module of the sections of the subbundle W,.

If V° is a connection on M, then each connection V on M may be written in the form

23) V=V°+r,
where 7 is an (1,2) tensor field on M. That is, for X € D'(M) we have
Vx = V‘O\ + Tx,

where Vyx and V% are derivations in D(M) and 7x is the (1,1) tensor field given by 7x(Y) =
7(X,Y), or 7x is a derivation in D(M) with 7x(f) = 0 for each f € F(M). From here it follows
the useful result.

Proposition 3.1. The set C(M) of the connections on M is an F(N)-affine module (space) [1]
associated to F(M)-linear module D} (M).

Let F be an almost product (ap)-structure on M. Setting
1 1
24) @lfp(V)x = -Q‘(VX +FoVyxoF), XF(T) = E(TX +Forxo F),
VX € DYM), it follows ¥p(V) € C(M), Xp(r) € Di(M) and

25) Y} = ¢r, Xp = Xp, Ur(V+7) = ¥r(V) + Xp(7).

Hence, ¢r is the F(M)-affine projector on C(A), associated to F(M)-linear projector Xg on
DY(M).

Definition 3.2. A connection V on M is called compatible with the ap-structure F' (or is an
F-connection) if it satisfies

26) VF =0.



It is easy to see that VF = 0 if and only if V preserves by parallelism the eigendistributions F*
and F~ of F. From the expression of ¢p(V) it results

27) Yp(V)x(F) =0, VX € D'(M),

i.e. the image of any connection V by the projector ¢ is an F-connection. Conversely, if VxF =0
it follows Vy o F — Fo Vx =0 and so, ¥r(V)x = Vx, VX € D}(M) ie. V € Imtp. Thus, we
have

Theorem 3.1. The set Cr(M) of the connections compatible with the ap-structure F is the affine
submodule of C(M), which is the image of the affine projector Vg

28) Cp(M) =Im¢p.
Considering on C(M) the conjugation with respect to F i.e. the F(M)-automorphism
Cr:C(M) — C(M) given by
29) Cp(V)x =FoVxoF, VX € DY(M),
we obtain

30) ¥r(V) = 5(V + Cr(V),

i.e. CF is the affine symmetry of the affine module C(M) with respect to affine submodule Cx(M),
made parallely with the linear submodule Ker Xz. Hence, ¥)p(V) is the mean connection of V
and its conjugate with respect to F. (V) will be called the F-connection associated to ¥V with
respect to ap-structure F.

Let V° be a fixed connection on M. Since Cr(M) = Imr, then for each connection
V € Cp(M) there exists V' € C(M) so that V = ¢p(V’). But from 23), there exists 7 € D(M)
so that V' = V° + 7 and therefore, V = ¢p(V° + 7). Then from 25) it follows

Theorem 3.2. The set Cr(M) of the connections V compatible with the ap-structure F is given by
31) V= 1,?’.7F(VO) + XF(T>,
where V° is a fized connection on M and 7 is an arbitrary (1,2)-tensor field on M.

Hence Cp(M) is the affine submodule of C(M) which passes through the F-connection ¢r(V°)
and has as direction the linear submodule Im Xp of D1 (M).

Definition 3.3. A connection V is called compatible with the ahp-structure (F, G, H) (or is an
(F, G, H)-connection) if it satisfies

32) VF=0, VG=0, VH =0.
It is clear that if we have, for example, VF = 0, VG = 0, then we have also

33) VH =0, VF, =0, VG, =0, VH, =0, a = 1,2,
VP, =0, VQ, =0, a =1,2,3,4.
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The compatibility of V with the ahp-structure (F, G, H) is equivalent with the absolute paral-
lelism of the eigendistributions of F, G and H, in the connection V. But it is easy to show that
all the distributions W,, Wag, Wa, o # 3 = 1,2,3,4 are absolute parallel in the connection V if
and only if W, a = 1,2,3,4 are. Hence we have

Theorem 3.3. The connection V is compatible with the ahp-structure (F, G, H) if and only if it
preserves by parallelism the distributions W,, a = 1,2, 3, 4.

From F oG = G o F it follows ¢¥)p 0 g = g o ¥, Xp o Xg = Xg o Xp, CroCg = Cg o Cp.
After that ¥ and ¥ being affine projectors associated to linear projectors X and Xg, it follows
that ¢ 0 Vg is the affine projector associated to linear projector Xg o Xg, i.e.,

34) Ypope(V+T1) =vrotg(V)+ XpoXa(r).
From here it results

Theorem 3.4. The set Crg(M) of the connections compatible with the ap-structure (F,G, H) is
given by

35) V= Ypo ’IT)G(VO) + XF o] XG(T),
where V° is a fived connection on M and 7 is an arbitrary element of D3(M).

With other words, the set Cr (M), of (F,G, H)-connections on M, is the image of the affine
projector ¥ o g

36) Cre(M) =Im(¢r o ¢g),

i.e. it is the affine submodule of C(M) passing by the (F, G, H)-connection ¢ o ¢¥g(V®), which
has the direction given by the linear submodule Im(Xr o X) of D3(M).

Taking in 35) 7 = 0, it follows that an ahp-structure (F, G, H) assigns to each connection
Ve € C(M), an (F,G, H)-connection V = ¢r 0 ¢g(V°®), which may be written in the form

1
37) V= Z[VO + Cr(V°) + Ca(V°) + Cu (V).
Hence, we have

Proposition 3.2. The (F, G, H)-connection V associated to a connection V° is the mean con-
nection of V° and its conjugate connections with respect to ap-structures F, G, H.

If we consider X € D}(M) and Y, € D' (M, W,,), a = 1,2, 3,4, we obtain from 37), taking into
account 15),

38) VXS/O = PQ(VT;(YQ)v a = 1', 21 34
Hence, we have

Proposition 3.3. The connections V®, a = 1,2,3,4, induced by the (F,G, H)-connection V,
associated to V°, on the subbundles W, by restriction, coincide with the projections of V° on W,

4
Taking Y € DY(M) and setting ¥ = Z Y, with Y, € D} (M, W,), we get

a=1

39) ViV =30 Pa(V(PaY)))
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i.e.

40) Vx =3 _ P,oV5 0P, VX € DY(M).

Definition 3.4. An Otsuki quasiconnection [7] on M is a pair D = (P, D), formed by a tensor
field P € D}(M) and a mapping D : D' (M) x DY(M) — D(M), which is F(M)-linear in the
first argument, IR-linear in the second and satisfies

Dx(fY) = X(f)P(Y)+ fDxY, ¥f € F(M), X,Y € D(M).

It results that a linear connection is an Otsuki quasiconnection with P = I. From 7) and (40) it
follows

Proposition 3.4. For a connection V° on M, the pairs D% = (Pa, Pao V%o P,), a =1,2,3,4,
X € DYM) determine four Otsuki quasiconnections on M. The restrictions of D* to the sub-
bundles W, coincide with the connections V@, obtained from V° by projections and the sum of D
is the (F,G, H)-connection V associated to V°.

From 38) and 40) it follows

Proposition 3.5. A connection V on M is an (F,G, H)-connection if and only if there are the
connections V< on the subbundles W, so that

4
41) Vy =Y V% oP,, ¥X € D'(M).

a=1

It results also from 40)

Proposition 3.6. A vector field Y € DY(M) is parallel along a curve v C M in the (F,G, H)-
connection V associated to V°, if and only if its components Y, € DY (M, W,) are parallel along
7 in the induced connections V* on W,.

The problem of the integrability for an ahp-structure has been analysed in a more general
framework by Walker [9,10], Hsu [4], Vidal and Vidal Costa [8] and others. We give here some
characterizations specific for our case.

Definition 3.5. One sais that the ahp-structure (F, G, H) is integrable if all the distributions of
the structure, i.e. Wy, Was, Wy, o = 1,2,3, 4, are integrable.

One has

Proposition 3.7. The ahp-structure (F, G, H) is integrable if and only if the distributions Wog,
a# 8 =1,23,4, are integrable.

Indeed, from W, = W, N W,,, a # B # v and W,4 integrable, it follows that W, are
integrable. After that, from W, = Z W3 and W, W, integrable, it results W, integrable.
ba
Since W,z are the eigendistributions of the ap-structures F, G and H, from this proposition
and the integrability of an ap-structure it follows

Theorem 3.4. The ahp-structure (F,G, H) is integrable if and only if the ap-structures F, G and
H are integrable, i.e. their Nijenhuis tensors are zero
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42) Np =0, Ng =0, Ny =0.
It is easy to verify that this condition is equivalent with
43) Np =0, Ng =0, Npg =0.

Considering a connection V° and its associated connection V with respect to ahp-structure
(F,G, H), given by 37), we obtain for the torsion of V

T(Xa,Ys) = Ps(V%,Y3) — Pa(V;iXQ) — [Xa, Yl
From here it follows
Py(T(Xa, Y3)) = —P,[Xa, Yal, Va £ 8#7=1,2,3,4

Remarking that P,[X,,Ys] = 0, for v # a # [, is equivalent with the integrability of the
distribution Wz, it results .

Proposition 3.8. The ahp-structure (F, G, H) is integrable if and only if there exists a connection
V° on M so that the torsion of the associated connection V, with respect to structure (F,G, H),
satisfies

44) PyoTo(Pyx Pg) =0, YVa# 3#~v=1,2,3,4.
Let now g be a metric on M i.e. a symmetric and nondegenerate (0, 2)-tensor field.

Definition 3.6. One sais that the metric g is invariant to the ahp-structure (F, G, H), or that
(F,G, H,g) is a mahp-structure on M if

45) go(Fx F) =g, go(GxG) =g, go(HxH)=g.

As in the first section we can prove that on any paracompact manifold M there exist Rie-
mannian metrics invariant to a given ahp-structure.
Setting

46) go=go (FxI), g3=go(Gx1I), gg=go(H xI)

we obtain new metrics on M, invariant to ahp-structure (F, G, H), called the associated metrics
to mahp-structure (F, G, H, g).

Definition 3.7. A connection V on M is called compatible with the metric g if it satisfies
47) Vg = 0.

Considering g as a mapping from D(M) to D;(M), which assigns to a vector field Y the
1-form w = ¢(Y,), i.e. w(Z) = g(Y, Z), for each Z € DY(M), we can associate to a connection
V € C(M) and a tensor field 7 € D3(M), the affine and the linear projectors ¢, and X, given
respectively by

“ 1 = . 1 -1
48) ¥y(V)x = '2‘(VX +9 7 oVxog), Xe(r)x = ‘2‘(TX +97 o7x0g).

As for an ap-structure F, for a metric g, we obtain

Theorem 3.5. The set C4(M) of connections V compatible with a metric g are given by
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49) V= 4y(V°) + X,(7),
where V° € C(M) is fized and 7 € DY(M) is arbitrary.

If (F,G, H,g) is an mahp-structure on M, then ¢)p 0ty = ¥y 0 ¢UF, etc., and Xpo Xy = Xg0 Xp,
etc. Thus from [1] it follows

Theorem 3.6. The set of connections on M, compatible with the mahp-structure (F,G, H,g) is
given by

50) V = 9p othg 0 hg(V°) + Xp o Xg o Xy(7),
where V° € C(M) is fired and 7 € DY(M) is arbitrary.
We remark that if a connection is compatible with the mahp-structure (F, G, H, g) it is also

compatible with the associated metrics go, g3, g4. Taking in 50) V° = V9, the Levi-Civita connec-
tion of g, we have 1,(V?) = V9 and setting 7 = 0, we obtain

Proposition 3.9. The connection V = Yr o Ye(V9), i.e. the (F,G, H, g)-connection associated
to Levi-Civita connection V9 of g, is compatible with the mahp-structure (F,G, H,g) on M.

Definition 3.8. We call the connection V = Yrohg(VY), the first canonical connection associated
to mahp-structure (F, G, H, g).

Considering an (F, G, H)-connection V on M, we have ¥r(V) = 9¢(V)
= V and therefore for the connection V = Yp 0 g 0 14g(V), compatible with the mahp-structure
(F,G,H,g), we obtain V= 14(V). Hence, we have

Proposition 3.10. If V is an (F,G, H)-connection on M, then V = 1,(V) is compatible with
the mahp-structure (F,G, H, g).

Let V be an (F,G, H)-connection on M. As we have seen, setting V&Y, = VyY,, for
X € DY(M) and Y, € DY M, W,5), a = 1,2, 3,4, we obtain a connection V* on each subbundle
W, of TM. Considering then as torsion for the connection V¢, the tensor field
T® = P,oTo (P, x P,) restricted to W,, where T is the torsion of V, we obtain

51) T%( X, Ya) = Vi, Ya — Vy. Xo — Pa[Xa, Yal, ¥Xo, Ya € DHM, Wa), a =1,2,3,4.
NO\V we can prove

Theorem 3.7. Given a Riemannian mahp-structure (F,G,H,g) on M, there exists a unique
connection V on M which satisfies

52) a) ﬁF:O, @G:(); b) Pgofo(PaxP@):Q a# 5;c) T\Q:O;
d) VXUE =0, where g =go (Pyx P,) and o, 3 =1,2,3,4.

Indeed, from a) we obtain ﬁxYa € DY(M,W,), VX € DYM), Y, € DY (M, W,), o =1,2,3,4,
and taking into account b) it follows

53) Vx,Ys = Ps[Xa,Vs), a# 8=1,2,3,4.
After that, from c) and d) we have
54) Vi, Ya — Vy, Xo — Pa[Xa, Ya] = 0,
Xag(Yas Za) = §(Vx,Ya: Za) + §(Xa, Vi, Za).
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Thus, as well as in the Riemannian case, it follows from here

20(Vx,Yar Za) = Xa§(Va, Za) + Ya§(Zas Xa) = Za§(Ya, Ya) -
_E(Xa» Pa[Yav Za]) + B(Yaa Pa[Zcu XaD + E(Zav PQ[XQ-, Ya])a
VX, Ya, Za € DHM, W,).

Hence, we have obtained a unique connection ¥ which preserves the ahp-structure (F, G, H), but
generally it does not preserves the metric g. More precisely, we have

56) (Vx.0)(Ya: Za) = 0, Vix,g(Ys, Z5) = (Lx,8)(Ys, Zs),
(Vx.9)(Ys,Zy) =0, a# B #v=123/4,

where Lx is the Lie derivative with respect to X.
Setting then V = ug(V) it follows from Proposition 3.10 that V is an (F, G, H, g)-connection
on M.

Definition 3.9. We call the connection V = %(%) the second canonical connection for the
Riemannian mahp-structure (F, G, H, g).

Example. Let N be a manifold and M = TN the total space of the tangent bundle 7 : TN — N.

Setting for each 1-form u € Dy(N), given locally by u(z) = wi(z)dz?, v(1)(2) = pi(z)y?, where

2z = (z,y) € T, N, we obtain a class of functions on T'N, with the following property. For any two

vector fields A, B € DY(TN), we have A = B if and only if A(yu) = B(yp), for each u € Dy(N).
Let V be a connection and X a vector field on N. Setting

57) XMyw) = v(Vxp), X(yw) = p(X) o, Yu € Di(N),

we obtain two vector fields X* and X¥ on TN, called respectively the horizontal and the vertical
lifts of X. For an 1-form w on N, the horizontal and wvertical lifts are given by

58) wh(Xh) = w(X)om, JZ(XL)—O;
W(X"(=0, w(X¥) =w(X)om, VX € DI(N).

After that, setting
59) F(X") = X" F(XV)=-X", VX € D}(N),

we obtain an apc-structure F on TN, having as eigendistributions F'* and F~, the horizontal
distribution HTN of the connection V and the wvertical distribution VTN of the fibration. For
f € D}TN) and g € DY(N) we define the horizontal and vertical lifts f*, f* and g", g° on TN, by

60) fh(Xh) FOOR fMX) =05 foXP) =0, f/(XY) = f(X)",
g YR) = g(X,Y)om, g"(XM YY) = g"(X"Y") = g"(X", V") =0,
gU (X", Yh) = g" (X", YY) = g°(X*, V") =0,
@(XV, YY) = g(X,Y)om, VX,Y € DY(N).
Let now (f, g) be a map-structure on N i.e. go (f x f) =g and g = go (f x I) its associated
metric. Considering the lifts

61) G=fr+f , H=f"—f" i =¢"+¢" 2=9"-9" 93=3"+3°, 92 =7" - 7",
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one obtains

Theorem 3.8. If (f,g) is a map-structure, § its associated metric and V a linear connection on
N, then the tensor fields F,G,H, g1 given by 59) and 61), determine on TN a mahp-structure
with the associated metrics gs, g3, gs.

We remark that the pairs (%, g") and (f7, g¥) determine map-structures on the subbundles
HTN and VTN with g" and g as associated metrics. After that the distributions (subbundles)
W, of the ahp-structure (F, G, H) are given by

62) Wy = (f)*, Wo = (f")7, W= (f)*, Wa= ()"
Considering local coordinates (z') on N and (z%,y%) on TN, where for z = (z,9) € T,N,

d
y =1 e and setting for V, V — = k»—x—, we obtain on TN the local vector fields and

$k
Q
8
<.

<
QD

ko

1-forms

i (o' o8 .0 T
— == =— —Tky =dyt + Iy dz"
63) s (8101) p Iy pt Sy = (dz")? = dy + [y’ dz”.

5} ; .
Hence, to the natural basis (W) and co-basis (dz') on N, we can associate on TN the adapted
iz

basis 527 i and co-basis (dz?,dy"). In these bases, denoting by the same letter the matrix
zt’ dy

of each tensor field, we obtain

e[y )o-[f gl a-[4 3]

g 0 g O B 0 g O

Therefore, tr F' = tr G = 0, tr H = 2tr f and hence F' and G determine always apc-stuctures on
TN and G determines an apc-structure if and only if f determines an apc-structure on N. If g is
a Riemannian metric on N, then (F, G, H, g;) is a Riemannian mahp-structure on TN, g, being
the Sasaki metric associated to metric g and the connection V on N. The associated metrics
92, 93, 94 are always of hyperbolic type. More precisely, g» and g4 are always of neutral type and
g3 is neutral if and only if f is an apc-structure on N. In an orthogonal basis on N, formed by
eigenvectors of f and the basis on TN formed by the corresponding horizontal and vertical lifts
of these, the tensors of the Riemannian mahp-structure (F, G, H, ¢;) and the associated metric
92, 93, g4 are given by 18) and 21), where n; = n3 and ny = ny. Let now D be the diagonal lift of
V, 3], i.e. the connection on TN given by

65) DynY™ = (VxV)h, DynY? = (VxY), Dx.Y? = Dy Y¥ =0, ¥X,Y € DY(N).

o Q)

For the horizontal and vertical lifts of f € D}(N) and g € DY(N), we obtain

66) Dy (f") = (Vxf)*, Dxo(f") =0, Dxn(f*) = (Vxf)*, Dxo(f*) =0
Dxi(g") = (Vxg)", Dx+(¢") =0, Dx1(¢g") = (Vxg)*, Dx=(g") =0, ¥X € D'(N).
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If (f, g) is a map-structure and g its associated metric, we get for the mahp-structure (F, G, H, g1)
and the associated metrics go, g3, 94,

DF = Oa DX"G = (va)h + (va)l" D)&‘G - 07
DXhH = (fo)h - (fo)v, Der = O;

D)&"gl = (Vl\g)h + (vxg)’vv DX]Ql - 07
Dxngs = (Vxg)" — (Vxg)’, Dxvgo =0
Dxigs = (Vx9)"+ (Vx9)", Dxvgs =0,
Dxngs = (Vxg)" = (Vxg)?, Dxvgs =0, VX € D}(N).

Hence, DF is always zero, DG and DH are simultaneous zero and namely when V f is zero. Dg;
and Dg, are zero for Vg = 0 and Dgs and Dgy are zero for Vg = 0. Resuming the previous
considerations we obtain finally

Theorem 3.9. If (f,g) is a map-structure on N and V = 1/;(V9) is the canonical (f,g)-
connection associated to it, then (F,G, H, g1) is a mahp-structure on TN and the diagonal lift D
of V is compatible with this structure.
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