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A complex centro-affine space C,, can be viewed as a real centro-affine space Oy, endowed with
an automorphism J which satisfies the condition J? = —I. Then, the group of the automorphisms
of C,, appears as the subgroup of the automorphisms of CQn which commute with J. In addition
a complex submanifold Sy, in C, appears as a real submanifold Sopm in Cay, whose tangent spaces
at all points are invariant by J. Sometimes Som is called an invariant submanifold in Cy,.

In particular, a complex hypersurface in C, can be viewed as an invariant submanifofd of
codimension 2 in Chy,. Moreover, under some assumptions the plane spanned by the vector of
position r and the vector J(r) can be taken as normal space at every point of the hypersurface.
Thus, the geometry of these hypersurfaces can be developed similarly to the geometry of real
hypersurfaces in real centro-affine spaces [3]-[6]. However one seems that it has a more rich and
more varied content.

~ In this work, our purpose is to sketch the theory of complex hypersurfaces in the complex
centro-affine spaces. Further details will be given in a forthcoming paper. We shall use, with some
exceptions, the terms and the notations from [5].

The final version of this paper was written while the author was visiting T.U. Berlin and
University Dortmund in July 1987, supported by DAAD. The author would like to express his
sincere gratitude to Professors Udo Simon, Rolf Walter and their colleagues from these Universities
for illuminating discussions and for kind hospitality.

Let G;,Hz be a real centro-affine space endowed with the complex structure J and let Sgn be
a complex hypersurface given locally by the equation

1 r=r(u),
(1) (i,7,k=1,2,....2n).

We assume that the analytic vector function r satisfies the condition

(2) (r,7, 71y ey Ton) # 0,

where 7 = J(r) and r; = dr/ou’.
Since Sy, is an invariant submanifold, we have also

(3) = J(r;) = Fjri,
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from which, by applying again J one obtains
(4) FiF} = 3},

i.e. F is the tensor field which defines the complex structure induced by J on Sop. Denoting by p
(resp. p) the covector of the tangent hyperplan which contains the tangent subspace to Sy, and
the vector 7 (resp. r), at every point of S, we have

(5) pr:l? szov pri:07 ﬁr:O:ﬁ:L 57'130,
from which it follows

G T S e [7, 71y ey Ton] .
(6) P e P T R e

(T‘?F', T1y -3 T2n er:rls“'vrQn)

Also from (3) and (5) one obtains

(7) 5= —J(p), =0, p7=0.
Now, from (5) it results
(8) piri + pojri =0, O;pir + piry = 0,

and the other ones which are obtained from these by replacing r by 7 or p by p.
We assume in the sequel that Sy, is regular i.e. satisfies the condition

(9) (p ﬁ*f)l*an) 7&0

By considering the centro-affine normalisation i.e. taking r and 7 = J(r) as normals, while p
and p = —J*(p) as conormals, we can write the fundamental equations
(10) 8]7'1 = T;‘Tirk + ,GjiT’ + /H]ZF

9;pi = "I p +"Gjip +"Hjip.

It comes out that ‘T and T are symmetric linear connections called the connections of the first
and the second kind, respectively, while 'G,"H,"G,"H are symmetric tensor fields called Eulerian
tensor fields, induced by the centro-affine normalisation of Sa,. From (5), (7), (8) and (10) one
obtains
(11) 'Gji = pojri = —p;ri = Oppjr = "Gy,

"Hj; = pOjry = —pri = Opyr = —"Hyj,

ie. 'G="Gand 'H = -"H.
Deleting the prime on G and H we can write the fundamental equations as follows

(12) /VjTi = Gjir + Hﬁﬁ ”Vjpi = Gﬁp — Hjiﬁ

Differentiating covariantly with respect to ‘T’ the both sides of the equality (3) and taking into
account (12) we obtain

(13) 'V Fi=0, Giy=HuFl, Gi=—GuF..
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The first relation tells us that 'T" is a symmetric F-connection. The last two relations, multiplied
with F' give us

(14) szF,]:E; e —Ghj, HmF/l‘F; = —Hh]'

i.e. the quadratic forms G and H are skew-invariant with respect to F'.
Form (5) and (14) we obtain ’

(15) (0205 P1y - P20 ) (Ty Ty 71, oy T2p) = det(Gyj).

So, Sop is regular if and only if the tensor field G is nondegenerate.
Putting ‘
pj = —J"(p;) = Ajpi + Bjp
one obtains by (4), (5) and (11)
(16) p; = —Fjpi

from which, by covariant differentiation with respect to "T" one obtains again the last two equalities
from (13) as well as

(17) "ViF} = 0.

This tells us that "I is also an F-connection.
The equalities Gj; = —p;r; and Hj = —p;r; lead to

oG~ TZ]-GM - NFZiGjh =0,
(18)
ORH 5; — TZ]'HM - ”%Hjh =0.

Therefore we have obtained

Proposition 1. The pair of connections ('T',"T) is conjugate [5] with respect to each or the tensor
fields G and H.

The integrability conditions of the fundamental equations (12) give us:

(19) 'R = Gid! — Gji0f + HuF} — Hy Fl,
'ViGji ='V;Gri, 'ViHj ="V ;Hp,
(20) "Rl = Grdl — Gjioh + Hu F' — Hyu

,,V};Gji - ”V]-Gki, I,VkHj,L‘ - ”Viji.

Therefore 'R = "R and the tensor fields ‘'VG,'VH,"VG,"VH are completely symmetric.
Taking k = h in (19;) and (20;) one obtains for the Ricci tensors of 'T' and "I the expression

(21) ,R]'i = //Rji = —Q(Tl — 1)Gﬂ

These equalities and (13) lead to

(22) Gji=———



which say that G and H are determined by F and the connection 'T" or “T". As G is symmetric, it
follows that the Ricci tensors 'Ry; and " Rj; are symmetric, hence the both connections T and "T
are equiaffine.
By using (22) and (19;_2) one obtains
1 .
'R = ———— ('Rj0f — 'R0 + 'R ;" F' = 'Rjm F" F1),
(23) kji 2(7),— 1) ( jiY%k kilj km 1ty g gmig k)«
'Vi'Rji = 'V;'Ryi.
For any symmetric F-connection on a complex manifold of real dimension 2n, the tensor field
P of H-projective curvature is defined by:
(24) PR = R+ 01 Pji— 6" Pij — (P — Pi)or + F{ Qi — F}' Qui — (Qij — Qi) ',
where
Py — R+ — O"(Ru + Rin)
i = i — ji hk kh)| »
(25) 2(n+1) n—1
1 3
o = 3 (6hoF — FI'F)), Qi = —P kY.

When the connection is equiaffine, we have

1
2 = R7
Hence
1
(27) Py = Ry, (6RRji — 0" Ry + Rim F"F) = Ry FTFY!).

Rt 9(n — 1)

The F-connection I is H-projectively flat (n > 2) if and only if the tensor field P vanishes [2].
From (19), (22) and (23) it results

Proposition 2. The connections of first and second kind, induced by the centro-affine normali-
sation on a complex hypersurface, are H-projective flat, equiaffine and symmetric F-connections.

The fundamental equations (12), the integrability conditions (19) or (20) and the formulae
(22) imply the following

Proposition 3. An analytic manifold §2n, endowed with a compler structure F and an F-
connection 'T' (resp. "T') which is symmetric, equiaffine H-projectively flat, can be immersed as a
complez, hypersurface in a complex centro-affine space (C~72n+2, J) such that F becomes the complex
structure induced by J and 'T" (resp. "T) be the induced linear connection of first kind (resp. second
kind). The immersion is determined up to a complex centro-affine automorphism.

Introducing the mean connection I' and the deformation tensor h, for the pair of connections
('T,"T) as follows

s, = L et om),

(28)

h‘l;z = <,F§i - ”F?ﬂ

[N e NN

216



we can write

Th =Tk 4+ }z’?i’

(29) 7: ]Z ]k
pk Tk .
I= % - hji.

From (13) and (17) it follows
(30) ViF} =0, ViGj=0, ViHj=0.
Thus we have

Proposition 4. The pairs of tensors (F,G) and (F,H) determine on a complex hypersurface,
complex metric structures [1].

By means of the mean connection and of the deformation tensor, the fundamental equations
become

(31) V]-rz- = }151-7'); + Gjir + HjiF, V]pl = —h,;-lipk + Gﬂp — H]zﬁ
The integrability conditions of these giye us:

(32) Rli]z = V]hfcz - thji + hihs  — h;ﬂhzm + GM(S; - sz'(sz + sz'F]‘-s - HJZFS,

ki'tjm i

P3G m — R Gjm = 0,

(33)
h}?Hkm - hZIiHjm = O,
(34) R}y = Vihs = Vjhi + hihS, — Wby, + Gridy — Gjidp + Hu Py — H i Fy.
Putting
(35) hijk = 1} Gm
from (33;) one obtains
(36) hijk = hikj,

which says that the tensor field h is completely symmetric.
Then, from (33,) it results

(37) hiJ'mF,Zn = hikm ij.

By substracting and adding the equations (32) and (34) one obtains, respectively,

(38) Vihs; = Vb,
(39) hii = Dilm — R + Grid; — G0y + GinFI'Ff — GkhEijs-
Putting
1 S
(40) ti = 5 i



we obtains from (38)

(41) Vit = Vi,
which says that the 1-form

(42) t=t;du’

is closed.
Then, considering

(43) W = (7‘, ;, T1, ...,Tzn), G= det(GU)
we obtain
/th — aln [‘JJ|
(44) ou
ph 1 9In|G| ’
thT 9w

and from this

(45) ty =

i.e. the 1-form t is just exacte.
From the fundamental equations (31) and their integrability conditions, it follows

Proposition 5. An analytic manifold Son, endowed with a complex structure F, a tensor field G of
type (0,2) symmetric and nondegenerate and a tensor field b of type (1,2) symmetric, which satisfy
the equations (141), 30,_3), (331), (35). (38), and (39), can be immersed as a complex hypersur-
face in the complex centro-affine space (@n_g, J) such that F, G, h be, respectively, the complex
structure and the tensor fields of type (0,2) and (1,2) induced be the centro-affine normalization.

The immersion is determined up to a complex centro-affine automorphism.
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