27 On Lie algebra bundles

An. Univ. din Timişoara, Ser. Mat.-Inf., vol. XXXIII, f. 1, 1995, 45-54.

The structure of Lie algebra bundles is very important and much studied, in the last time, especially for its applications in the Theoretical Physics [1], [3]-[5]. The purpose of this work is to present some properties of derivations and linear connections, compatible with such a structure.

1. Definition of the Lie algebra bundle

For a paracompact and connected differentiable manifold M_n of class C^{∞} , let $\mathcal{F}(M)$ be the ring of real functions, $\mathcal{D}_s^r(M)$ the $\mathcal{F}(M)$ -module of tensor fields of type (r,s) and $\mathcal{D}(M)$ the tensorial algebra. For a vector bundle $\xi = (E, \pi, M)$, we denote by $\mathcal{D}_s^r(M, E)$ the $\mathcal{F}(M)$ -module of tensor fields of type (r,s) and by $\mathcal{D}(M,E)$ its tensorial algebra.

Definition 1. A Lie algebra vector bundle is a vector bundle $\xi = (E, \pi, M)$ equiped with a tensor field $C \in \mathcal{D}_2^1(M, E)$, which is skew–symmetric and satisfies the Jacobi identity, that is:

(1)
$$C(u,v) + C(v,u) = 0,$$

$$C(u,C(v,w)) + C(v,C(w,u)) + C(w,C(u,v)) = 0,$$

$$\forall u,v,w \in \mathcal{D}_0^1(M,E).$$

Setting for each $x \in M$ and $u_x, v_x \in E_x$,

(2)
$$\{u_x, v_x\} = C_x(u_x, v_x),$$

we obtain a IR-Lie algebra structure on the fibre E_x , with C_x as structural tensor. Putting then, for $u, v \in \mathcal{D}_0^1(M, E)$

$$\{u,v\} = C(u,v),$$

we obtain a $\mathcal{F}(M)$ -Lie algebra structure on the module $\mathcal{D}_0^1(M, E)$, denoted by $\mathcal{D}_0^1(M, E, C)$. The vector field $\{u, v\}$ is called the *Lie product* or the *bracket* of u and v.

A Lie algebra vector bundle is called a *Lie algebra bundle* if there exists a \mathbb{R} -Lie algebra L and for each $x_0 \in M$ a vectorial chart $(\mathcal{U}, \varphi, L)$ such that for any $x \in \mathcal{U}$, the map $t_x : L \longrightarrow E_x$, given by $t_x(\vec{y}) = \varphi^{-1}(x, \vec{y})$, is a Lie algebra isomorphism. It follows that for a basis $\{\ell_a\} \subset L$,

 $a=1,2,...,r=rank\,L$ and the corresponding basis $\{e_a(x)\}=\{t_x(\ell_a)\}\subset E_x$, one obtains the structure equations

(4)
$$\{e_b(x), e_c(x)\} = C_{bc}^a e_a(x), \ b, c = 1, 2, ..., r,$$

where C_{bc}^a are constant on \mathcal{U} . In this case all the fibres of ξ are isomorphic to L as Lie algebras.

Exemple. Considering the bundle of tensors of type (1,1) on ξ and setting

$$[S,T] = S \circ T - T \circ S, \ \forall S, T \in \mathcal{D}_1^1(M,E),$$

one obtains on this bundle a structure of Lie algebra bundle with $g\ell(n:\mathbb{R})$ as typical fibre.

2. Derivations compatible with the bracket

By a derivation in the vector bundle $\xi = (E, \pi, M)$, we shall understand a \mathbb{R} -derivation in the tensorial algebra $\mathcal{D}(M, E)$ which preserves the type and commutes with the contractions. It is uniquely determined by its values on $\mathcal{F}(M)$ and $\mathcal{D}_0^1(M, E)$. The set of these derivations is denoted by Der(M, E) and it is a $\mathcal{F}(M)$ -module and a \mathbb{R} -Lie algebra. For every derivation $D \in Der(M, E)$, we shall denote by $res_s^r(D)$ its restriction to $\mathcal{D}_s^r(M, E)$. In particular, $res_0^0(D)$ is a vector field on M. There is an isomorphism between the algebra $\mathcal{D}_1^1(M, E)$ and the subalgebra of the drivations on ξ with the restriction to $\mathcal{D}_0^0(M, E) = \mathcal{F}(M)$ equal to zero. This isomorphism associates to each $S \in \mathcal{D}_1^1(M, E)$ the derivation D = i(S) given by i(S)(f) = 0, $f \in \mathcal{F}(M)$ and i(S)(u) = S(u), $u \in \mathcal{D}_0^1(M, E)$. If $\xi = (E, \pi, M, C)$ is a Lie algebra vector bundle, then setting for each $u \in \mathcal{D}_0^1(M, E, C)$

$$(6) ad_u(v) = \{u, v\},$$

it comes out that ad_u is a tensor field of type (1,1) on ξ and that the map $ad: \mathcal{D}_0^1(M,E,C) \longrightarrow \mathcal{D}_1^1(M,E)$ is a $\mathcal{F}(M)$ -Lie algebra morphism. The kernel of ad is the center K of $\mathcal{D}_0^1(M,E,C)$ and its image is an ideal in $\mathcal{D}_1^1(M,E)$, which is isomorphic to the factor algebra $\mathcal{D}_0^1(M,E,C)/K$.

Definition 2. One says that a derivation $D \in Der(M, E)$ is *compatible* with the bracket on the Lie algebra vector bundle $\xi = (E, \pi, M, C)$ if it is a derivation in the IR-Lie algebra $\mathcal{D}_0^1(M, E, C)$.

In other words $D \in Der(M, E)$ is compatible with the bracket on ξ if and only if

(7)
$$D\{u,v\} = \{Du,v\} + \{u,Dv\}, \ \forall u,v \in \mathcal{D}_0^1(M,E).$$

It follows from here

Proposition 1. A derivation $D \in Der(M, E)$ is compatible with the bracket on the Lie algebra vector bundle $\xi = (E, \pi, M, C)$ if and only if the derivative of the structural tensor field C is zero,

$$DC = 0.$$

Remark 1. The set Der(M, E, C) of the derivations compatible with the bracket on ξ is a $\mathcal{F}(M)$ -submodule and a \mathbb{R} -Lie subalgebra in Der(M, E).

Remark 2. The set $i(\mathcal{D}_1^1(M, E, C))$ of the derivations of the form D = i(S), with $S \in \mathcal{D}_1^1(M, E)$, compatible with the bracket on ξ , is a $\mathcal{F}(M)$ -submodule and a subalgebra of Der(M, E, C).

Remark 3. All derivations of the form $D = i(ad_u)$ with $u \in \mathcal{D}_0^1(M, E)$, called inner derivations, are compatible with the bracket on ξ and their set $In(\mathcal{D}_0^1(M, E, C)) = Im(i \circ ad)$ is a $\mathcal{F}(M)$ -submodule and an ideal in Der(M, E, C).

Exemple. Every derivation on the vector bundle $\xi = (E, \pi, M)$ induces a derivation compatible with the bracket on the Lie algebra bundle of tensors of type (1, 1) on ξ .

3. Linear connections compatible with the bracket

A linear connection ∇ in the bundle $\xi = (E, \pi, M)$ may be defined as a map $\nabla : \mathcal{D}_0^1(M) \longrightarrow Der(M, E)$ which is $\mathcal{F}(M)$ -linear and satisfies the condition

$$(9) res_0^0 \circ \nabla = 1_{\mathcal{D}_0^1(M)}.$$

To each linear connection ∇ one associates the map $R: \mathcal{D}_0^1(M) \times \mathcal{D}_0^1(M) \times \mathcal{D}_0^1(M, E) \longrightarrow \mathcal{D}_0^1(M, E)$ given by

(10)
$$R_{XY}u = [\nabla_X, \nabla_Y]u - \nabla_{[X,Y]}u, \quad \forall X, Y \in \mathcal{D}_0^1(M), \ u \in \mathcal{D}_0^1(M, E)$$

and called the *curvature* of the connection ∇ . The set of linear connections in the bundle ξ is a $\mathcal{F}(M)$ -affine module [2], which we denote by $\mathcal{C}(M, E)$. Considering the exact sequence of $\mathcal{F}(M)$ -modules

(11)
$$0 \longrightarrow \mathcal{D}_1^1(M, E) \xrightarrow{i} Der(M, E) \xrightarrow{res_0^0} \mathcal{D}_0^1(M) \longrightarrow 0,$$

a linear connection ∇ in the vector bundle ξ is a right splitting for this sequence. It follows from here

Proposition 2. Given a linear connection ∇ in the vector bundle $\xi = (E, \pi, M)$, every derivation $D \in Der(M, E)$ can be decomposed uniquely as follows

$$(12) D = i(S) + \nabla_X,$$

where $X = res_0^0(D)$ and $S = res_0^1(D - \nabla_X)$.

Hence, the connection ∇ determines a decomposition of the $\mathcal{F}(M)$ -module Der(M,E) in the direct sum

(13)
$$Der(M, E) = i(\mathcal{D}_1^1(M, E) \oplus \nabla(\mathcal{D}_0^1(M)).$$

Considering two derivations $D_1, D_2 \in Der(M, E)$ and setting

(14)
$$D_1 = i(S_1) + \nabla_{X_1}, \quad D_2 = i(S_2) + \nabla_{X_2},$$

one obtains for their bracket,

(15)
$$[D_1, D_2] = i([S_1, S_2] + \nabla_{X_1} S_2 - \nabla_{X_2} S_1 + R_{X_1 X_2}) + \nabla_{[X_1, X_2]}.$$

This formula suggests us to consider the $\mathcal{F}(M)$ -linear map

$$res_1^1 \circ \nabla : \mathcal{D}_0^1(M) \longrightarrow Der \mathcal{D}_1^1(M, E)$$

and from the identity

(16)
$$[\nabla_X, \nabla_Y] S - \nabla_{[X,Y]} S = [R_{XY}, S], \ X, Y \in \mathcal{D}_0^1(M), \ S \in \mathcal{D}_1^1(M, E),$$

we obtain

Proposition 3. The map $res_1^1 \circ \nabla$ is a Lie algebra morphism if and only if

$$(17) R = \alpha \otimes I,$$

where α is a 2-form on M and I is the identical automorphism of ξ .

In this case, we can consider the semidirect product of R-Lie algebras

$$\mathcal{D}_1^1(M,E) \underset{res_1^1 \circ \nabla}{\times} \mathcal{D}_0^1(M),$$

defining the bracket by

$$[(S_1, X_1), (S_2, X_2)] = ([S_1, S_2] + \nabla_{X_1} S_2 - \nabla_{X_2} S_1, [X_1, X_2]).$$

Then, from the formula (15), we obtain

Proposition 4. The map $i \times \nabla : \mathcal{D}^1_1(M, E) \underset{res^1_1 \circ \nabla}{\times} \mathcal{D}^1_0(M) \longrightarrow Der(M, E)$, given by

(19)
$$(i \times \nabla)(S, X) = i(S) + \nabla_X,$$

is a Lie algebra isomorphism if and only if the connection ∇ has zero curvature.

Remark 4. Only in this case, the connection ∇ is a splitting of the sequence (11) regarded as a Lie algebras exact sequence.

Definition 3. One says that a linear connection ∇ in the Lie algebra vector bundle $\xi = (E, \pi, M, C)$ is *compatible* with the bracket if for each $X \in \mathcal{D}_0^1(M)$ the derivation ∇_X is in Der(M, E, C).

From Proposition 1 it follows

Proposition 5. The linear connection ∇ in the Lie algebra vector bundle $\xi = (E, \pi, M, C)$ is compatible with the bracket if and only if

(20)
$$\nabla_X C = 0, \quad \forall X \in \mathcal{D}_0^1(M).$$

For this condition we may give the following geometrical characterization

Proposition 6. The linear connection ∇ in the Lie algebra vector bundle ξ is compatible with the bracket if and only if for each curve on the manifold M, the parallel transport, defined by ∇ , establishes a Lie algebra isomorphism between the fibres of ξ along the curve.

Using the partition of unity and the formula (4) one obtains

Proposition 7. Every Lie algebra bundle admits a linear connection compatible with the bracket.

Conversely, from Proposition 6, it follows that any Lie algebra vector bundle which admits a linear connection, compatible with the bracket, is a Lie algebra bundle.

The set of these connections is a $\mathcal{F}(M)$ -affine submodule of $\mathcal{C}(M,E)$ denoted by $\mathcal{C}(M,E,C)$.

Exemple. Every linear connection in a vector bundle $\xi = (E, \pi, M)$ induces a linear connection, compatible with the bracket, in the Lie algebra bundle of tensors of type (1, 1) on ξ .

Remark. If ∇ is a linear connection compatible with the bracket, in the Lie algebra bundle $\xi = (E, \pi, M, C)$, then from the formula (17) it follows that the sequence of $\mathcal{F}(M)$ -modules

(21)
$$0 \longrightarrow \mathcal{D}_1^1(M, E, C) \xrightarrow{i} Der(M, E, C) \xrightarrow{res_0^0} \mathcal{D}_0^1(M) \longrightarrow 0$$

is an exact one and that every linear connection $\nabla' \in \mathcal{C}(M, E, C)$ is a right splitting of this sequence.

If $\nabla \in \mathcal{C}(M, E, C)$ and $S \in \mathcal{D}_1^1(M, E, C)$, then from

(22)
$$\nabla_X S = [\nabla_X, S],$$

it follows that $\nabla_X S \in \mathcal{D}_1^1(M, E, C)$. Hence from Proposition 4, one obtains

Proposition 8. The map

$$i \times \nabla : \mathcal{D}^1_1(M, E, C) \underset{res^1_1 \circ \nabla}{\times} \mathcal{D}^1_0(M) \longrightarrow Der(M, E, C),$$

where $\nabla \in \mathcal{C}(M, E, C)$, is a Lie algebra isomorphism if and only if the curvature of ∇ is zero.

Let now D_1 and D_2 be two derivations of the form

(23)
$$D_1 = i(ad_{u_1}) + \nabla_{X_1}, \quad D_2 = i(ad_{u_2}) + \nabla_{X_2},$$

where $\nabla \in \mathcal{C}(M, E, C)$. Then, we have from (15)

$$[D_1, D_2] = i \left(ad_{(\{u_1, u_2\} + \nabla_{X_1} u_2 - \nabla_{X_2} u_1)} + R_{X_1 X_2} \right) + \nabla_{[X_1, X_2]}.$$

Considering the map $res_0^1 \circ \nabla : \mathcal{D}_0^1(M) \longrightarrow Der \mathcal{D}_0^1(M, E, C)$, from (10) it follows that it is a Lie algebra morphism if and only if R = 0. In this case we can consider the semidirect product of Lie algebras $\mathcal{D}_0^1(M, E, C) \underset{res_0^1 \circ \nabla}{\times} \mathcal{D}_0^1(M)$ with the bracket defined by

(25)
$$[(u_1, X_1), (u_2, X_2)] = (\{u_1, u_2\} + \nabla_{X_1} u_2 - \nabla_{X_2} u_1, [X_1, X_2]).$$

Then, from the formula (24) it follows

Proposition 9. The map

$$(i \circ ad) \times \nabla : \mathcal{D}_0^1(M, E, C) \underset{res_0^1 \circ \nabla}{\times} \mathcal{D}_0^1(M) \longrightarrow Der(M, E, C)$$

given by

(26)
$$((i \circ ad) \times \nabla)(u, X) = i(ad_u) + \nabla_X,$$

where $\nabla \in \mathcal{C}(M, E, C)$ is a Lie algebra isomorphism if and only if ∇ has zero curvature.

The kernel of the morphism $(i \circ ad) \times \nabla$ is $K \times \{0\} \subset \mathcal{D}_0^1(M, E, C) \times \mathcal{D}_0^1(M)$. Considering the factor Lie algebra $\mathcal{D}_0^1(M, E, C)/K$ and setting

(27)
$$\overline{\nabla}_X \bar{u} = \overline{\nabla_X u}, \quad \forall \, \bar{u} \in \mathcal{D}_0^1(M, E, C)/K,$$

one obtains a derivation on this algebra.

Then, taking the map $\overline{\nabla}: \mathcal{D}_0^1(M) \longrightarrow Der(\mathcal{D}_0^1(M, E, C)/K)$ given by the rule $X \longrightarrow \overline{\nabla}_X$, from the formula

(28)
$$[\overline{\nabla}_X, \overline{\nabla}_Y] \bar{u} - \overline{\nabla}_{[X,Y]} \bar{u} = \overline{R_{XY} u} = \overline{0},$$

it follows that it is a Lie algebras morphism. Hence, we can consider the semidirect product of Lie algebras $\mathcal{D}^1_0(M,E,C)/K \underset{\overline{\nabla}}{\times} \mathcal{D}^1_0(M)$, with the bracket

(29)
$$[(\bar{u}_1, X_1), (\bar{u}_2, X_2)] = (\{\bar{u}_1, \bar{u}_2\} + \overline{\nabla}_{X_1} \bar{u}_2 - \overline{\nabla}_{X_2} \bar{u}_1, [X_1, X_2]) .$$

Setting

(30)
$$ad_{\bar{u}}^*(\bar{v}) = ad_u v, \quad \forall \bar{u}, \bar{v} \in \mathcal{D}_0^1(M, E, C)/K.$$

it results

Proposition 10. If there is on the Lie algebra bundle $\xi = (E, \pi, M, C)$ a linear connection ∇ of zero curvature, which is compatible with the bracket, then the map

$$((i\circ ad^*)\times\nabla):\mathcal{D}^1_0(M,E,C)/K\underset{\overline{\nabla}}{\swarrow}\mathcal{D}^1_0(M)\longrightarrow Im((i\circ ad)\times\nabla)$$

is a Lie algebras isomorphism.

BIGLIOGRAPHY

- 1. Albert, C., Some properties of k-flat manifolds. J. Diff. Geom. 11 (1976), p. 103–128.
- 2. Cruceanu, V., Sur les connections compatibles avec certaines structures sur un fibré vectoriel banachique. Czech. Math. J. 24 (1974), p. 126-142.
- 3. Lecompte, P., Lie algebras of order 0 on a manifold. Geom. and Diff. Geom. Proc. Haifa, Israel. 1979. Lect. Notes in Math. 792, p. 356-361.
- 4. Martin, M., Structuri geometrice în spații fibrate vectoriale II. Structuri geometrice și derivări. Stud. Cerc. Mat. 36 (1984), p. 171-192.
- 5. Ungar, T., Elementary Systems for Lie algebra bundle actions. Diff. Geom. Meth. in Math. Phys. Proc. Clausthal 1980, Lect. Notes in Math. 905, p. 66-89.