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1 Introduction

As is well-known, there is, up to isomorphisms, three algebras of dimension 2 on R, i.e.,
C = Rlz]/(z?+ 1), A = R[z]/(2* = 1) and D = R[x]/(z?). The theory of complex functions
is richer than the other two. Algebraically, this reflects the fact that C is a field, while A and D
are not: A has divisors of zero and D has even nilpotent elements. Nevertheless, until relatively
a few years ago we did not have — with Grotendhieck and his school, and others — a systematic
treatment of the geometries over rings with divisors of zero and even nilpotent elements, and so the
importance of the theory of functions with values in A or I cannot be given as being definitively
established. Furthermore, from the structural point of view, it is clear that each of the three earlier
algebras determines a perfectly defined geometry, on an equal footing with the others. Moreover,
it is not reasonable to demand that the theory of functions on A or D have the same importance
as that on C as a prerequisite for its study. With this mentality, also the passage from R to C
would be criticizable. Actually, some of this mentality did exist at the end of the XVIIIth century
and the beginning of the XIXth, since, as is well-known, complex geometry had serious problems
in its development, and only the importance of its results, clearing — and sometimes relativizing
— the nature of real geometry, dissipated the doubts of a good number of “real” geometers. On
the other hand, it must be said that each geometry has its own characteristics, different from
the other geometries, which is the fact justifving its study. Only the actual development of a
geometry justifies its existence. In the case of paracomplex geometry, the problem has been per-
haps mainly of terminology, because the geometrical richness of its elements (existence of two real
distributions, of the underlying foliations, associated almost product structure, etc., which in the
complex case are not “real” elements) has frequently permitted to attack the problems from many
different points of view, forgetting to maintain a common methodology for all of them. When one
reads papers on distributions, foliations, almost product structures, hyperbolic geometry, etc., it
is very frequent that there exists a lexic of paracomplex geometry that could unify all of those
works in a subject only, whose development cause and develops all the questions treated “ad hoc”
by the authors. And this is another of the characteristics of a genuine geometry: to unite under
a common lexic different situations, guiding the intuition and formulating its own problems.

The present paper is an updated and expanded version of [53]. Here, we shall also understand
by paracomplex geometry the geometry related to the algebra of paracomplex numbers and,
mainly, the study of the structures on differentiable manifolds called paracomplex structures.
Moreover, when we consider a compatible neutral pseudo-Riemannian metric, we have the para-
Hermitian structures, para-Kahler structures and their variants.

Acknowledgements. We are very grateful to Professors E. Reyes Iglesias, A. Bejancu, F. Etayo,
P. Fortuny, A. Montesinos Amilibia and J. A. Oubifa for their valuable suggestions.

2 Paracomplex numbers

2.1 Algebraic theory

Let us consider the real plane R? = {(z,y) : 7,y € R}, endowed with its natural structure of vector
space over R and with its canonical basis {e; = (1,0),ex = (0, 1)}. If z = (z,9), 2’ = (¢, ¢/), are
elements of R?, defining a product 2z’ = (v2’ + yy/, 2y’ + yx'), one obtains a new composition law
in R? which determines, with the addition and the multiplication by real numbers, a structure of
associative, commutative and unitary algebra over R of rank 2, denoted by A and called algebra
of paracomplex numbers.
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This algebra contains the subfield R’ of elements (z,0), and the map z — (z,0) is an iso-
morphism between R and R’. Identifying 1 with (1,0) and letting j = (0,1), every number in
A = R? can be written as z = (r,y) = z(1,0) + y(0,1) = z + jy with j2 = 1. The useful
bases for A are {1,;j} and {e" = (1 +j),e” = 3(1 —j)}. In the second one every paracom-
plex number 2z can be written as z = z7e™ + 27¢”, 27,27 € R. To every paracomplex number
z = & + jy we can associate its conjugate Z = x — jy, and the map z — Z is an automorphism of
A. Every paracomplex number z = z + jy has an associated real number, its modulus |z|, defined
by |2 = /]22] = \/Ja? — 42]. If |2| # 0, then there exists the inverse, defined by 2! = +z/|2?,
according to 22 — y?> > 0 or < 0, respectively. The set A of invertible paracomplex numbers is
a multiplicative group isomorphic to R* x R*, where R* = R — {0}. The isomorphism is given
by z = zte™ + z7e” +— (27,27). The elements 2 # 0 in A such that |z] = 0 (2zZ = 0) are the
divisors of zero, which have the expression z = z(1 & j) in the basis {1,j} and z = ze® in the
basis {e*,e™}.

Associating to each paracomplex number z = x+ jy the point in the plane R? with coordinates
(z,y), we obtain the paracomplex plane. In this plane there are some relevant elements: the z-axis
or real azis, the y-axis or paraimaginary azis, the hyperbola 22 — y? = 1 of paracomplex numbers
such that 2z = 1, the conjugate hyperbola 2% — y?> = —1 of paracomplex numbers such that
zZ = —1, the diagonal lines t + y = 0 and =z — y = 0, i.e., the divisors of zero. For the geometry
of the paracomplex plane see [224].

We can also associate to each paracomplex number 2 = z + jy the real matrix S given by

(v2)

and so obtain an isomorphism between A and the algebra of such matrices. Notice that 2z = det S.
In another way, we can associate to each paracomplex number z = z%e™ + z7e~ the matrix

(0 %)

and so we have an isomorphism of A with the corresponding matrix algebra.

We recall here, as an application of paracomplex numbers, the construction of a pseudo-
Riemannian Cayley transformation when working with pseudo-Riemannian Poincaré models of
constant curvature, given in [96]. Notice that paracomplex numbers permit us to work in any
signature of the metric.

I rol

2.2 Paraholomorphic functions

Consider A endowed with the usual topology of R?, an open subset U of A and a paracomplex
function f: U — A. We shall suppose that all functions are at least of class C'. Putting
z=z+jyand f(z) = P(z,y) + jQ(z,y), one can prove that both the limit and the continuity for
the function f can be expressed in terms of the limit and the continuity of the real functions P
and Q. We shall say that the function f: U C A — A is a paraholomorphic function at zg € U
if and only if there exists o € A such that

flzo+ Az) = f(20) = alz + (20, Az)||AZ]],

where ||Az]| = /(Az)? + (Ay)? and (zp, Az) — 0 when Az — 0. It follows that f is paraholo-
morphic at zg if and only if P and @ are differentiable at (¢, o) and satisfy the conditions

opP o oP _0Q
(2.1) %(40) = 'a;(w)a B9 (20) = 5;(%)-
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d
The number d—{(:o) = o will be called the derivative of f at z, and we have (dropping now the

subscript z)
df 9P oP 0P 0Q 0Q 0Q 0Q 0P
& o Ty T e oy Ve ey ey
Y €T Y Y Y
The function f is said to be paraholomorphic in U if it is paraholomorphic at every z € U.
Writing z = zte™ + 27¢~ and f = f*e" + fe”, one can see that f is paraholomorphic in U if
and only if in U: f* and f~ are differentiable, f* depends only of z* and f~ depends only of 2.
Thus we have art 9 J g+ 5
a{_:%:o and d—£:3£+e++%6_'
We shall say that f is paraholomorphic of class C* if it has derivatives up to the order k and the
derivative f* is continuous. One can easily see that f is paraholomorphic of class C k if and only
if the real functions P and @ are of class C* and also satisfy the conditions (2.1). The function
f is said to be analytic at z, € U if there exists a neighbourhood V, C U such that f admits a
convergent power series expansion

f@) =D Mlz—2)"  z€Vi MEA.
k=0

The function f is analytic if and only if the real functions P and @ are analytic and satisfy
(2.1). Writing f = f*e* + f~e™, one can prove that f is analytic if and only if f* and f~ are
real analytic functions of z* and 2™, respectively. The concepts of paraholomorphic and analytic
functions — which are not equivalent [98] — can be immediately extended to the case of several
paracomplex variables.

The interest of paraholomorphic functions is greater than it can seem at a first glance, as the
following three considerations show:

(1) To begin with, we recall some definitions and results from [99]. For the terms almost
paracomplex manifold and the related ones, see §3 in the present paper.

Definition 2.1. A map f: (M, J) — (M',J') between almost paracomplex manifolds of class C>
(resp. of class C¥) is said to be a morphism of almost paracomplex manifolds if for all z € M we
have f,oJ, = JJ,‘(I) © f*'

Proposition 2.2. Let (M, J) be an almost paracomplex manifold of class C* (resp. of class C*).
A necessary and sufficient condition in order the map F: M — A to be a morphism of almost
paracomplex manifolds is that there exist functions f,g € C*(M) (resp. f,g € C¥(M)) such that:

i) F=(1+)f+0-=4g.,

(ii) f and g are first integrals of T*(M) and T~ (M), respectively; that is to say, X*(f) = 0,
X~(g) = 0, for all X* € T(T*(M)), X~ € D(T~(M)), where T*(M) (resp. T~(M))
denotes the eigenbundle on M corresponding to the eigenvalue +1 (resp. —1) of J.

Definition 2.3. The morphisms of an almost paracomplex manifold (M, J) of class C* in A are
named almost paraholomorphic functions of (M, J).

We are now in a position to explain that the interest of paraholomorphicity is global, since
paraholomrphic functions are narrowly linked to the properties of the foliations defined by a
paracomplex structure. In other words, the ring C%"(M) of almost paraholomorphic functions
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measures the integrability of the distributions defined by T* (M) and T~(M). Let us first intro-
duce some definitions aiding to exactly determine the above assertion. Let D be a distribution
on M. Let us define by recurrence the distribution D*) in the following way: DY = [D, D],
D®) = D, D*V] k=1,2,.... Then D is said to be completely non integrable if for every x € M
there exists an integer k such that the values of the vector fields of D*) at x span T,(M). It
is easily proved by induction that the first integrals of D are also annihilated by all the fields of
D). Consequently, if D is completely non integrable and M is connected, the only first integrals
of D are the constant functions. Hence, from Proposition 2.2 it follows that if the distributions
defined by both T*(M) and T~ (M) are completely non integrable and M is connected, then the
only almost paraholomorphic functions of M are the elements of A.

At the opposite end we have the case where both distributions are completely integrable, which
we shall now consider. We first recall that a paracomplex manifold of class C* (resp. of class C¥) is
an almost paracomplex manifold (M, J) of class C™ (resp. of class C*) such that the distributions
defined by the subbundles T (M) and T~ (M) associated to the structure are both involutive.

Definition 2.4. [99], The morphisms of a paracomplex manifold of class € in A will be named
paraholomorphic functions.

Theorem 2.5. [99] A 2n-dimensional almost paracomplex manifold (M, J) of class C* is para-
complez if and only if its sheaf of germs of almost paraholomorphic functions is locally isomorphic
to the sheaf of germs of paraholomorphic functions of A™.

Moreover, if the distributions defined by the subbundles 77 (A1) and T~ (M) are both involu-
tive, then the sheaf of germs of paraholomorphic functions is locally isomorphic to the sheaf of
germs of paraholomorphic functions on A", where dim M = 2n.

(2) The existence of “many” global paraholomorphic functions is also linked to the immersion
problem; that is, to the possibility of embedding a paracomplex manifold (M, J) into AY, for
some sufficiently great N. This is the paracomplex analog of the question in theory of complex
manifolds which gives rise to Stein manifolds.

(3) On the other hand, let us suppose that for a given paracomplex manifold A there exist
the quotient manifolds M* = M/F*(M) and M~ = M/F~(M), being F*(M) and F~(M)
the foliations corresponding to T7(M) and T~ (M) respectively; i.e., that each topological quo-
tient space admits a structure of differentiable manifold such that the canonical projections p*
and p~ of M on M™T and M~ respectively, are submersions. Under these conditions, the map
f=p"xp : M — M* x M~ is a paraholomorphic immersion with respect to the the canonical
paracomplex structure of M+ x M~. Consequently, the paracomplex manifolds having quotient
manifolds with regard to the distributions defined by the eigenbundles can be obtained in the
way just described. If M is compact (and connected), its structure is that defined in a finite
covering by the canonical structure of the product. If, in particular, M is simply connected,
then M = M™ x M~. Thus, every paracomplex differentiable manifold admitting the quotient
submanifolds M ™ and M, admits a subordinate structure of analytic manifold.

Remark 2.6. Some relations between harmonic maps f of Lorentz surfaces M into pseudo-
Riemannian manifolds and paraholomorphic quadratic differentials on A/ (and other objects)
associated with f are given in [72].

More specifically, let f: (M,h) — (N,g) be a smooth non-degenerate mapping from the
Lorentz surface (M, k) into the pseudo-Riemannian manifold (N, g). The tension field T (f) ([72,
p. 9]) decomposes into

T(f) =H"(f)+V"(f),
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where v"(f) € E = df(TM) and H"(f) = E* are the tangential and normal components of 7 (f),
respectively. The vector field H"(f) is said to be the h-mean curvature vector field along f.
On the other hand, let d” f be the extension by paracomplex linearity of the differential map
1
df and let 9/0z = 3 (83 +j82> for given h-isothermal coordinates (z,y) on M. Then, for
€ Y

q = 9(Dgrsa/02), Dan p9/9)), where D denotes the Levi-Civita connection on N, the (globally

defined) quadratic differential Q = qdz? associated with f is said to be paraholomorphic if q is
paraholomorphic.
Among other results in [72], the author obtains the following one:

Theorem 2.7.
(i) The quadratic differential Q=q dz* associated to f is paraholomorphic if and only if v*(f)=0.

(i) f is harmonic if and only if Q is paraholomorphic and H(f) = 0.

2.3 Paracomplex modules

Let V* be a commutative group (V, +), endowed with a structure of unitary module over the ring
A of paracomplex numbers. Let V¥ denote the group (V,+), endowed with the structure of real
vector space inherited from the restriction of scalars to R. We shall call V® the real model of V*
or the real vector space associated to V*. Putting

J(u) =ju, Pt(u)=eu, P (u)=c¢eu, u € V*h,
we obtain

J2=1y, PY?=pt, p2=p,
PtoP™ =P oP" =0,
Pt+P =1y, PT-P =J.
Hence, J defines a product structure on V®, and P*, P~ are the associated supplementary
projection operators, P* = (1/2)(1y + J) and P~ = (1/2)(1y — J). Writing then VT = PT(V)
and V— = P~(V), it follows that V® = V®* @ V*~ and that V** and V®~ are the eigenspaces
of J corresponding to the eigenvalues +1 and —1, respectively. A vector u € V4, u # 0, is said
to be a singular vector if and only if there exists A # 0 such that Au = 0. As it is easily seen, a
vector is singular if and only if it is an eigenvector for J.

Suppose V# has paracomplex dimension n, and let B* = {ey, ..., e,} be a basis. We then have
for u € V&,
n
u = Z ZkEL -
k=1

Writing now 2 = x4 + jyk, we obtain

n n
u = E Tpep + E Yk€ntk s
k=1 k=1
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where e, = Jeg. It follows that B® = {ey, e, } is a basis of V* and thus we have dim V* = 2n.
We shall call B® the real basis of the first kind associated to B*. For z, = z e} + z; €, , we have

n n
, *2: + + }: - =
U = z. €, + 2, €
k=1 k=1

where ¢ = Ptey = etey and e = P~e, = e ¢ One can see that B = {¢/} and B*~ = {¢; }
are basis for V** and V*~, respectively, and that B** = {e;, e, } is a basis for V*. We shall say
that B®* is the real basis of the second kind associated to B*. Consequently, V¥ and V*~ are real
subspaces of the same dimension n, and thus the eigenvalues 1 of J have the same multiplicity
n, i.e, TrJ =0.

Conversely, let V¥ be a 2n-dimensional real vector space endowed with a product structure J,
that is, with J? = 1, such that Tr.J = 0. If we define on the underlying abelian group (V,+) the
multiplication by paracomplex numbers as

(a+ jb)u = au + bJ(u),
the space V becomes a unitary paracomplex module of dimension n, which we denote V;*, for
which VZ is the associated real vector space. This is the reason we call paracomplex structure on
VR to its traceless involutive automorphism J.

An A-linear transformation T on V is also R-linear and satisfies T o J = J o T. Conversely,
an R-linear transformation on V' commuting with J is also A-linear. Thus, we have the group
isomorphism

GL(V*) ~ GL;(VE)={T € GL(VR):ToJ=JoT}.

n
Let us consider a basis B* = {e;} for VA Writing T'(e;) = Zalke, it follows that the map
1=1
T — a = (af) deﬁnes an isomorphism GL(V‘“) ~ GL(n,A). Putting of = af + jbf, we have
n

n

T(er) = Z age + Z Voenat, Tenir) Z ble + Zaienﬂ. Consequently, the map

=1 =1 =1

a b
(3 1),

where a = (af), b= (bf), establishes an isomorphism

GL;(VE)~ GLy,(2n.R) = {A € GL(2n,R) : AJy = JyA},

0 I,
J= ( L ) |
n
Finally, putting of = o ke, + a, ke_, we have T|( () Zaflef, (ep) = Z a;le[_, and so the
1=1

where

basis B®* originates an isomorphism

GL;(VE)~ GL;(2n,R) = {A € GL(2n,R) : AJ = JA},

5 I, 0
(ko)
It is easy to see that we have isomorphisms

GL(V*) ~ GL(VE) ~ GL(n,R) x GL(n,R).

where
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2.4 Para-Hermitian modules

A para-Hermitian form over the unitary paracomplex module Vi* is a map h: VA x VA — A
which is A-linear in the first argument and para-Hermitian symmetric, i.e.:

h(uy + ug, v) = h(ug,v) + h(ug,v), h(du,v) = Ah(u,v), h(v,u) = h(u,v).
Writing
h(u,v) = g(u,v) + jp(u, v),
we obtain two real bilinear forms g and ¢ on V3, which satisfy
9=9, 'o=-¢ go(JxJ)=-
o(fxJ)==~p, go(lyxJ)=p, po(lyxJ)=g.

Conversely, given on (Vi J) a symmetric bilinear form g satisfying g o (J x J) = —g, taking
p=go(ly xJ)and h = g+ jp, it follows that h is a para-Hermitian form on V2. The form h is
non-degenerate if and only if g (or ¢) is. We shall denote by (V4, h) the para-Hermitian module
— with h non-degenerate — and by (Va, g, J) the associated real vector space, endowed with the
structure (g, J), called para-Hermztzan structure on VE

The A-linear transformations of V;* preserving the metric h constitute a group Uy (V%), called
the paraunitary group on (V% h). We have a group isomorphism

Un(VH) = GLy,(VE) ={T € GL(VE) : ToJ=JoT, go(TxT)=g}.
n 9 Zn

The form ¢ defines a symplectic structure on V3, which is also preserved by the elements
T € GLy4(Vyy). By considering a basis B* = {e;.} for VE we ha\e hi = g + Jow, and for
n n n

u= Z Zper = Zxkek + Z Yklnik, U= Z Crer = kae;\ + ZmenH we obtain
k=1 k=1 k=1
h(u,v) = 2h{ = UGV + j UV,
where z = (2), = = (zx), ¥y = (i), (= (G)y €= (&), 1= (M),

(3 r-(5) o (2 3) -5 )
Y n ¥ -9 g —¢

and g = (gu), ¢ = (pr). One can take [224] an orthonormal basis B = {¢;}, and then have
hit = Orty gt = Oty 0w = 0. So, in this basis one has

(2.2) h(u,v) = 2¢, glu,v) = %€= Tyn,  plu,v) = =T+ YE,

the associated matrices being
I, 0 0 -I,
}10:[7“ GO_(O _In)- (I)O—(]n 0 )

(1) The quadratic form g has necessarily signature (n,n) and so it determines a neutral structure
on V3.

Remark 2.8.

(2) The restrictions of the bilinear forms g and ¢ to V¥* and V®~ are null, and thus these
subspaces are maximally isotropic for g and ¢.
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The orthonormal basis B in (V4, h) and its associated basis of the first kind in (V??, g, J),
establish the isomorphisms

Up(VA) = U(n,A) = {a € GL(n,A) : aa = I,,}

n

and

GLJQ(V ) GLJO CO(QTZ R) = {A € GL( ) 4J0 -.]0 t4G0‘4 = Go} .

If h is given by (2.2) with respect to the orthonormal basis B of V;#, taking the associated basis
of the second kind in V} we have

n n n
_ S i _
u“E ~kekJrE 2y € s L*E Ckek+g Cr € »
k=1 k=1 k=1

and hence ‘
zt+ 27 2t — 2" ISEES U*C*—C’

from which ) )
g(u,z‘) = §(tz+c_ + t<+ZA)f Llj(,ufv) = a(t —C_ t<+ 7)

and the associated matrices are
=1 0 I, = 1
“=3 ( I, 0 ) - =3

The basis B** establishes a group isomorphism

GLyg(Vay) =~ GLj;= {( g tAO_l > cAe€ GL(n,R)}.

Hence U, (V;#) is isomorphic with GL(n,R).

2.5 Paracomplex projective spaces

Let V* be a paracomplex unitary module, V¥ the associated real vector space, V4 = V4 — {0},
and A = {z € A : |z| # 0} the multiplicative group of invertible paracomplex numbers. Let
us denote by ~ the equivalence relation in V4* given by u ~ v < 3 2z € A : v = zu. The
corresponding quotient space will be denoted

P(V*)=V*/A,

and will be called the paracomplex projective space associated to V*. We can consider in a similar
way the real projective space associated to VF, denoted by P(V®) = V* /R*, where R* = R— {0}.
In order to see the relation between P(V#) and P(V®), we must see which are the respective
equivalence classes. For every u € V**, its equivalence class [u]* = {zu : z € A} = Au, is
contained into the submodule Au of V4. If u is singular, that is, u € (VT UV ™) — {0}, then every
vector in Au is A-linearly dependent, and consequently Awu is not free. A point [u] corresponding
to a singular vector u will be called a singular point of P(V*). The set of singular points is the
reunion of the projective subspaces P(V4%) and P(V4™) of P(V#4). If u is singular, then either

u=u" €V oru=u" € V4, and writing 2 = z7e" + 27e~, we obtain zu = z7u or zu = 2" u.
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Hence, to the submodule Au corresponds the real vector line Ru belonging either to the subspace
VE* or to the subspace VF~. It follows that to the singular point [u]* corresponds in P(V¥) the
point [u* = R*u, contained into the real projective subspace P(V¥*) or P(V¥~). These subspaces
will be called the azes, or the absolute or invariant subspaces of P(V®). If the vector u is not
singular, then u = u™ +«~, with u*,u™ # 0, and 2u = zTut + z7u~. It follows that Au is a
1-dimensional submodule of V*, to which it corresponds in V* the subspace Ru™ & Ru~, which
has real dimension 2, and intersects V** and V™, respectively, in the vector lines Ru™ and Ru™.
Consequently, to a nonsingular point [u]* of P(V*#) corresponds in P(V®) the line intersecting
P(VE+) and P(V®7) in the singular points [u™]* and [u~]¥, respectively. We can conclude that
P(V*) decomposes into two subsets:

(1) the subset of singular points P(V4T) U P(V4™), which is in bijective correspondence with
the set P(VE*) U P(VE™), that is, with the axes of P(VF),

(2) the subset P(V4) = V4/A, where V4 = V4 — {VA* U VA~ }, of nonsingular points, which is
in bijective correspondence with the set of lines of P(V®) which lay upon the axes P(V®")
and P(VE®). These lines constitute a congruence called absolute or invariant congruence.

If one associates to each line in this congruence the couple of singular points upon which it
lays, a bijection P(V#) «— P(V®*) x P(V®") is obtained. We can conclude that

P(V*) = {P(V¥) x P(VE)HJ{PV*)UP(VF)} .

For VA = A" the set P,(A) = A™!/A has been defined by Rozenfeld [223], [224, p. 578] and
Libermann [144] as the paracomplex projective space. 1t is topologically equivalent to P,(R)x P,(R)
(see [144]). Libermann-Rozenfeld’s definition is the best one from a geometrical point of view,
as they consider the nonsingular paracomplex lines. But our present definition of the paracom-
plex projective space as P(V4) = V& /A has the advantage of containing all the algebraically
reasonable equivalence classes, and also that its real model is the whole real projective space
P(VE) = VB /R* with the involution j defined by j([u]*) = [Ju]®, where J is the paracomplex
structure on VE. For V4 = A2 the real model (P;(R),j) has been defined by O. Mayer [150],
who named it the hyperbolic biazial space. For V* = A", the real model (Py,_1(R),j) has been
named by Norden and others [251] the hyperbolic biaffine space. The paracomplex projective
model P, (B) [87] (see Section 8.2) is an open subset in the fourfold covering space A" /A . over
Libermann-Rozenfeld’s projective space, being A, the connected component of the unity in the
group A.

We recall here an application of paracomplex numbers: a way of interpreting a projective
geometry as an elliptic geometry. Consider pairs of points z,y and pairs of hyperplanes a, 3
in P,(R). Such quadruples possess a projective invariant (z,3)(y,a)/(z,a)(y, 3). Combine z
and «a into one A = ze™ + ae”. Analogously, B = ye' + fe”. A and B may be considered
as points of the paracomplex projective n-space P(A"1); indeed, multiplication of A with the
paracomplex number z7e™ + z7e” yields 2z ze’ + 27 ae”. Hence, it means multiplication of z and
o separately. Using the conjugation of paracomplex numbers one gets AA = (z,a), BB = (y, ),
AB - BA = (,8)(y,a). So the above projective invariant of four elements may be written as an
invariant of two points AB - BA/AA - BB, which provides the paracomplex projective space with
an elliptic structure. This device, systematically used by Rozenfeld [222]-[224], as Freudenthal
[85] points out, can be applied to projective geometry over complex numbers or quaternions, and
also to symplectic geometry, by considering paracomplex (split) quaternions.
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3 Paracomplex manifolds

3.1 Some definitions and results

In order to obtain a better understanding of the ideas and results in the survey, we shall now recall
some general definitions concerning (almost) paracomplex, (almost) para-Hermitian and (almost)
para-Kahler manifolds. From now on, all the manifolds and geometric objects are C*.

Definition 3.1. An almost product structure J on a differentiable manifold M is a (1,1) tensor
field J on M such that J2 = 1. The pair (M, J) is called an almost product manifold. An almost
paracomplex manifold is an almost product manifold (M, J) such that the two eigenbundles T+M
and T—M associated to the two eigenvalues +1 and —1 of J, respectively, have the same rank.
(Note that the dimension of an almost paracomplex manifold is necessarily even.) Equivalently, a
splitting of the tangent bundle TM of a differentiable manifold M, into the Whitney sum of two
subbundles TM of the same fiber dimension is called an almost paracomplex structure on M.
An almost paracomplex structure on a 2n-dimensional manifold M may alternatively be defined
as a G-structure on M with structural group GL(n,R) x GL(n,R).

A paracomplex manifold is an almost paracomplex manifold (M, J) such that the G-structure
defined by the tensor field J is integrable. An integrable almost product manifold is usually
called a locally product manifold. Thus, a paracomplex manifold is a locally product manifold
(M, J) such that if the characteristic polynomial of J is (z — 1)"(z 4+ 1)%, 7 +s = dim M, then
r = 5. We can give another — equivalent — definition of paracomplex manifold in terms of local
homeomorphisms in the space A" and paraholomorphic changes of charts, in a way similar to the
complex case.

A definition of a paracomplex structure by considering a vector bundle E on a manifold M is
given in [21].

Proposition 3.2. An almost paracomplex manifold (M, J) is paracomplex if and only if it satisfies
one of the following equivalent conditions:

(1) The two distributions defined on M by J are involutive.
(2) The Nijenhuis tensor N of J defined by
N(X,Y) = [JX,JY] = JJX, Y] = J[X, JY]+ [X, Yl, X, Y e X(M),
vanishes everywhere.
(3) There ezists a torsionless linear connection parallelizing J.

Proposition 3.3. ([127)) Let (M, J) be a 2n-dimensional paracomplex manifold. Then M has an
atlas {(Ua, Pa)taca with Uy open and

R (U o T T N
a coordinate map satisfying the following condition: if UaNUs = ), then the para-Cauchy-Riemann

equations

1) 0 % P M
oz Oy dyp  Oxj

1<kl<n, «of€A,
hold. In this case, on each Uy, J is given by

¢)
0] 3] 7 0
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Conversely, suppose that M has an atlas {(Uy, o)} satisfying (3.1). Then, if we define J on U,
by (3.2), then J is globally defined on M, and (M, J) is a paracomplex manifold.

Definition 3.4. Let (M, J) and (M’,J’) be (almost) paracomplex manifolds. Then a smooth
map f of M to M is called a paraholomorphic map if the relation fi, 0 J, = J}(p) o f.p is satisfied
for each point p € M, where f,, is the differential of f at p. If there is a paraholomorphic diffeo-
morphism of M onto M, then (M, J) and (M’, J') are said to be paraholomorphically equivalent.
A paraholomorphic diffeomorphism of M onto itself is called a paraholomorphic transformation of
M. We denote by Aut(M, J) the group of paraholomorphic transformations of M. (Notice that
the eigenbundles of J are invariant under paraholomorphic transformations.)

Let M be a real differentiable manifold and let F,(M) be the A-algebra of differentiable
functions of M on A. We can define a paracomplexr vector field on M in the same way as we
do in the real and complex case; that is, as a derivation of F,(M). We denote by X.(M) the
module of paracomplex vector fields on M. Given Z € X,(M), we define Z|,, p € M, by
Z|p(f) = (Z(f))(p). The conjugate of a paracomplex vector field Z is the paracomplex vector
field Z defined by Z(f) = Z(f). Any Z € X,(M) can be written in a unique way as Z = X + jY,
where X,Y € X(M). Moreover, if {e,} is a basis of X(M), then it is also a basis of X,(M). The
Lie bracket of paracomplex vector fields is defined as usual.

The way of construction of the graded ring A, (M) = @, /\A (M) of paracomplex (differen-
tiable) forms is similar to the real case: /\A (M) is the F,(M)-module of alternate k-linear appli-
cations from X, (M) x ... x X4 (M) (k times) onto F,(M). For k = 0 we define /\A M) = Fu(M).
As to paracomplex vector fields, a paracomplex form can be written as w = « + j3, where
a,  are real forms. The exterior differentiation of paracomplex forms is defined as usual. It
is a real and commutative endomorphism d of A, (M) of degree 1 and zero square such that

df(X)=Xf, [eF.(M), Zex.(M).

3.2 Examples of paracomplex manifolds

(1) ([55]) The product manifold M"™ x M™ of a real manifold by itself has a canonical paracomplex
structure.

(2) ([127, 144]) Let (z1,..., 20, Y1, - -, Yn) be the natural coordinates on R?". Let us consider the
following two kinds of foliations: ), + y, = const, and z; — yx = const, 1 < k < n, which define
a paracomplex structure on R2", These foliations are invariant under translations by the lattice
Z2" of all integral points in R?™. So, they naturally induce a paracomplex structure on the torus
RQn/an.

(3) ([130]) The product manifold M x M’ of two almost paracontact manifolds A and M’ admits
an almost paracomplex structure.

(4) ([168]) The group G = SL(2,R) acts on its Lie algebra g = s{(2,R) by conjugation. As the
1

invariant bilinear form (X,Y) = 3 Tr XY on g = sl(2,R) has signature (2,1), Ad defines a double

covering of SL(2,R) onto SOy(2,1). Choose the basis



of g = sl(2,R), and use the corresponding coordinates (z,vy, z) < X +yY + 27 to identify g with
R3. The G-orbits in g are of several types. The hyperbolic orbits, defined by G - (AX) = G - (\Y),
A > 0, are diffeomorphic to the hyperbola G- (AX) =~ Q. = {(z,y,2) : 2% + y* — 22 = X\?}. These
orbits are pseudo-Riemannian symmetric spaces, where the corresponding involution ¢ is given
by conjugation by X

and the corresponding fixpoint group is

H—{(S a(_)l):aER—{O}}.

The tangent space of M at (A,0,0) = AX is now identified with T(500)Q+x = RY @ RZ = m,
and the involution (a, b) — (b, a) defined by 3 adyX is a paracomplex structure commuting with

Ad(H) making @, a paracomplex manifold.

(5) Many authors, among which C. Bejan, V. Cruceanu, S. lanus, S. Ishihara, T. Nagano,
V. Oproiu, R. Rosca, C. Udriste and K. Yano, have considered almost paracomplex structures
on the tangent bundle of a manifold A/. Let V be a linear connection on M and denote by X"
and X" the vertical and horizontal lift respectively to the tangent bundle T'M ([260]) of the vector
field X € X(M). Putting then

(3.3) P(XY)= X" PX"=-X" QX" =X" QX" =X,

they obtain two almost paracomplex structures on T M. The structure P is paracomplex if and
only if V has vanishing curvature, and @Q is paracomplex if and only if V has both vanishing torsion
and curvature. These structures have been extended to the case of a nonlinear connection, and to
the specific cases of a nonlinear connection defined by a Finsler, Lagrange or Hamilton structure
(29, 38, 39, 175]). Similar structures for the cotangent bundle are obtained from a connection V
and a non-degenerate (0,2) tensor field g on M [52]. If « is a differentiable 1-form and X a vector
field on M, a¥ denotes the vertical lift of o and X" the horizontal lift of X to T*M, putting

(3.4) P(X")=-X" P@)=a" QX" =(X")" Qa")=/(a"",

where b and § are the g-musical isomorphisms, they obtain two almost paracomplex structures on
T*M. P is paracomplex if V has vanishing curvature and @) is paracomplex if and only if both
the exterior covariant differential Dg of g given by

(Dg)(X,Y) = Vx(Y") = Vy(X*) = [X, Y]

and the curvature of V vanish. The case where V is symmetric has been considered in [21]. In
this reference one can find more examples.
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4 Para-Hermitian manifolds

4.1 Almost para-Hermitian manifolds

Definition 4.1. An almost para-Hermitian manifold (M,g,J) is a differentiable manifold M
endowed with an almost product structure J and a pseudo-Riemannian metric g, compatible in
the sense that

(4.1) g(JX,Y) +g(X,JY)=0, XY eZXx(M).

An almost para-Hermitian structure on a differentiable manifold M is a G-structure on M whose
structural group is the real representation. of the paraunitary group U(n,A) given at the end
of subsection (2.4). An almost para-Hermitian manifold can also be defined as a differentiable
manifold with an almost para-Hermitian structure. It is easy to check that an almost para-
Hermitian manifold is necessarily almost paracomplex and that the metric ¢ has signature (n,n).

A para-Hermitian manifold is a manifold with an integrable almost para-Hermitian structure
(g,J). That is, the G-structure associated to J is integrable [86].

Given an almost para-Hermitian manifold (M, g, J), we shall call fundamental 2-form to the
2-covariant skew-symmetric tensor field F' defined by F(X,Y) = g(X, JY).

An almost para-Hermitian manifold (M, g,J) such that dF = 0 shall be called an almost
para-Kdhler manifold.

Two almost para-Hermitian manifolds (M, g,J) and (M', ¢, J') are said to be paraholomor-
phically isometric if there exists an isometry f: M — M’ such that f,oJ = J' o f,.

Proposition 4.2. ([50, 127]) Let (M,g,J) be an almost para-Hermitian manifold, and let V
denote the Levi-Civita connection associated to g. Then, with the above notations, the following
relation holds

20((VxJ)Y, Z) + 3dF(X,Y, Z) + 3dF (X, JY,JZ) + g(JX,N(Y, Z)) = 0.

Several authors have defined almost para-Hermitian manifolds, with this name or another,
as neutral manifolds, bilagrangian manifolds, almost hyperbolic Hermite manifolds, hyperbolic
almost Hermite manifolds, etc. It seems that the first author to use the name hyperbolic in this
context is Prvanovi¢, but already Crumeyrolle used the term hyperbolic complex structure in [55].
Some results on the existence of almost para-Hermitian manifolds can be found in [109].

Definition 4.3. Let (M, g, J) be an almost para-Hermitian manifold, and let V be the Levi-Civita
connection of g. The curvature operator R(X,Y’) is defined by R(X,Y) = Vixy] — [Vx, Vy],
and the Riemann-Christoffel tensor field is given by R(X,Y, Z, W) = g(R(X,Y)Z, W). We shall
denote also by R the value of R at a generic point x € M. Then, if X,Y € T, M, we write
K'(X,Y) = R(X,Y,X,Y). A subspace £ C T,M is said to be non-degenerate if g|g is non-
degenerate. If {X,Y} is a basis of a plane E C T, M, then E is non-degenerate if and only if
g(X, X)g(Y,Y) — g(X,Y)? # 0. For any non-degenerate plane E C T, M we define the sectional
curvature as

K'(X,Y)
9(X, X)g(YV,Y) = g(X,Y)?

where {X,Y'} is any basis of E; K(X,Y") only depends on E. Since g(JX,Y) +¢(X,JY) =0, we
have g(X,JX) = 0. If X,JX € T,M are linearly independent, they determine a plane of T, M,
which we call the paraholomorphic section defined by X. If the sectional curvature is defined, that
is, if X is not isotropic, we write H'(X) = K'(X,JX), H(X) = K(X,JX) and say that H(X) is
the paraholomorphic sectional curvature defined by X.

Paraholomorphic sectional curvature is introduced and studied in [80]. The authors obtain
several results on such a curvature in the case of para-Kéhler space forms (see Section 8).

K(X,Y)
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4.2 Examples of almost para-Hermitian manifolds

(1) ([24]) Any parallelizable even-dimensional manifold and, in particular, any even-dimensional
Lie group, can be endowed with an almost para-Hermitian structure.

(2) ([24, 82]) The cotangent bundle of any manifold admits an almost para-Hermitian structure.
One way to give such a structure is the following: Let M be an n-dimensional differentiable
manifold, endowed with a symmetric linear connection V with coefficients F;,C Then, one can
define the Riemann extension on the cotangent bundle T*M as the pseudo-Riemannian metric G
on the total space of T*M locally given by

_ —kaffj (511
G‘( &0 )

with regard to the local coordinates (z;,p;) on T*M. On the other hand, let J be the almost
product structure on T*M whjch has as vertical distribution the vertical subbundle of TT*M,
and as horizontal subbundle the horizontal distribution determined by the connection V. We
have the following result:

Theorem 4.4. ([24]) With the above notations, (G, J) is an almost para-Kdhler structure on the
total space of the cotangent bundle T* M, whose fundamental 2-form F satisfies F = df, where 6
denotes the Liouville form, and thus coincides with the canonical symplectic structure on T*M.
Moreover, if V has vanishing curvature, then the structure (G, J) is para-Kdhler.

(3) ([25]) Let S2*~1(r) = {x € R¥™ : (x,z) = r?} be the pseudosphere of radius r > 0, dimension
2n — 1 and index n in R?", and let H2""'(r) = {z € R¥,, : (z,z) = —r”} be the pseudohyper-
bolic space of radius r > 0, dimension 2n — 1 and index n in R2" ;. Then the product manifolds

nt
M = 8§27 (r) x SP27Y(ry) and M = HEM = ry) x HZ27H ), r,m2 > 0, nq,mp € {1,2,...}, ad-
mit a family of almost para-Hermitian structures. By analogy with Hopf’s and Calabi-Eckmann’s
manifolds, Bejan calls hyperbolic Hopf manifolds and hyperbolic Calabi-Eckmann manifolds to the
above product manifold M when either n; =1 and ny € {2,3,...} or ny,n2 € {2,3,...}, respec-

tively.

(4) A lot of examples of almost para-Hermitian manifolds is given by Bejan in [25, refs. 12, 18, 25],
some of which are included in the present survey. Those given in [21] are almost para-Hermitian
structures on the tangent bundle TM of a manifold M, associated to vertical, complete and hor-
izontal lifts [260] of tensor fields on M to T'M.

(5) ([38]) Let TM be the tangent bundle of an n-dimensional manifold M. Let the total space
of TM be endowed with a nonlinear connection D, and denote by X and X" the vertical and
the horizontal lift of a vector field X on M. Putting J(X?) = X" and J(X") = XV we have
an almost paracomplex structure on the manifold TM. Let g be a metric on the vertical bundle
VTM. Then, writing

GXP Y™ = —G(XY, YY) = g(XV, YY),  G(XMY")=G(Y*, X" =0,

we obtain a metric G on TM of signature (n,n), and (G, J) is an almost para-Hermitian structure
on TM.

(6) In [49, 50, 52] it is shown that if one considers a linear connection V and a nonsingular either
symmetric or skew-symmetric (0,2) tensor field ¢ on a manifold M, then certain lifts of these
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objects to TM or to T*M give a complete class of some important, tightly linked structures,
including some remarkable almost paracomplex structures. In fact, consider on TM, besides the
structures P and @ given by (3.3), the (0,2) tensor fields Q, © ,and K defined by
QXM Y™ = Q(XY, YY) =0, QX" YY) =QY? X" =g(X,Y)";
(4.2) XM YM =0(Xv, YY) =0, OXMhYY)=-0(Y" X" =g(X,Y);
K(XhYh) = ~K(X?, YY) = g(X,Y)", K(X"Y")=K({Y" X") =
If g is symmetric, then the structures (P, Q) and (@, K) are almost para-Hermitian structures
with the same fundamental form, which is equal to ©. If g is skew-symmetric, then the structures
(P,0) and (Q,©) are also almost para-Hermitian, with fundamental 2-forms equal, respectively,
to 2 and K.
Consider now on T*M, besides the almost paracomplex structures P and @ given by (3.4),
the (0,2) tensor fields Q, ©, H and K given by
QX" Y") = (a®, ) = 0, QXM 5) = (5", X") = BX)",
O(X", Y") = B(a®, %) = 0, (X", ) = —6(8", X") :@w,
(4.3) H(XM Y = g(X,Y)", H(X",BY) = H(, X*) =
H(a",3") = g7} (a. )", K(X"Y") =g(X,Y)",
K(X"h )= KB, X" =0, K(a*,3)=—g Yo, B)".

>N

If g is symmetric, the structures (P, 2) and (@, K) are almost para-Hermitian structures with the
same fundamental 2-form ©. If ¢ is skew-symmetric, the structures (P, Q) and (@, ) are almost
para-Hermitian structures with fundamental 2-forms equal, respectively, to © and H. Notice that
P, Q2 and © depend only on the connection V on M. Hence, any linear connection V on a manifold
M determines an almost para-Hermitian structure (P, ) on the cotangent bundle T*M. If V is
symmetric, then the structure (P, () is the one given in Example 2 above.

(7) ([82]) Let N7 and N, be two arbitrary manifolds and gy, go two metrics defined on T* Ny, T* N,
respectively, giving these a structure of almost para-Hermitian manifold. Write T(T*N;) = PléBQl
and T(T*Ny) = P, @ Q2. Take as (M, g) the pseudo-Riemannian product of (T*Ny,g;) and
(T*Na,g2). Then TM = P, & Q1 & P, ® @2, and the two distributions P = P, & @, and
Q = Q1 ® P, on M define an almost product structure J on M. Now, since P, and (), are both
g-isotropic and ¢(X,Y) =0 for all X € P, Y € @, we conclude that P is isotropic with respect
to g. Similarly, @ is g-isotropic and hence (M, g, J) is an almost para-Hermitian manifold.

(8) Ianug and Rosca [115] proved that, given a Riemannian structure g on a manifold A, and the
almost paracomplex structure P on TM given in (3.4), being V the Levi-Civita connection of g,
then the complete lift ¢¢ of g with respect to V determines an almost para-Hermitian structure
on TM.

(9) ([144]) The pseudosphere S§ admits a structure of almost para-Hermitian manifold which is
not integrable. Libermann obtains this structure by using Cayley’s split octaves.



4.3 Representation-theoretical classification of almost para-Hermitian
manifolds

As is well-known, in [107] almost Hermitian manifolds (M, g, J) are classified with respect to the
decomposition in invariant and irreducible subspaces, under the action of the structural group
U(n), of the vector space of tensors satisfying the same symmetries as the covariant derivative
VF of the fundamental 2-form F with respect to the Levi-Civita connection V of the metric
g. Thus we have an adequate framework for the several types of almost Hermitian manifolds,
previously defined by a number of authors in terms of geometric properties which retain some
portion of Kahler geometry. The previous method was used in [166] for Riemannian almost product
manifolds, and in [104] for almost complex manifolds with a Norden metric. A classification of
almost para-Hermitian manifolds is made in [20]. The author obtains 36 classes up to duality,
and gives characterizations of some of the classes. A classification a la Gray-Hervella is given in
[93], where 136 classes up to duality are obtained. We give here the table of primitive classes
Wi, ..., Ws obtained in [93]:

PRIMITIVE CLASSES OF ALMOST PARA-HERMITIAN MANIFOLDS OF DIMENSION > 6
[Wi [We [ W5 [Wa [Ws [ We [Wr | Wi
(VxF)(X,Y)=0 * *
dF =0 % x
OF =0 * %
(VxE)Y,Z) =
{1/2(n = D) HOF(Y)9(X,Z) - 6F(Z)g(X,Y) * *
+6F(JY)g(X,JZ) = 6F(JZ)g9(X,JY)}
VaB ey * * * * * *
VuBeY * * ¥ * * *
VaU€eH * * * * * *
VoV eH * * * * * *

Here, for an almost para-Hermitian manifold (M, g, J), V denotes the Levi-Civita connection, F
the fundamental 2-form, § the codifferential, V (for vertical) the (+1)-eigendistribution associated
to the eigenvalue +1 of J, H (for horizontal) the (—1)-eigendistribution corresponding to the
eigenvalue —1 of J, A, B vector fields of V and U,V vector fields of H.

The authors also give examples of the primitive classes, which are based on the general almost
para-Hermitian structure on the tangent bundle given in [50].

Remark 4.5. The term “classification” is not the most correct. For this kind of results, it
would be best to use another more appropriate term, as for instance: pre-classification, division,
tabulation.

We now give a few commentaries on some classes related with the given classification:

The class of almost para-Hermitian manifolds is the most general one, corresponding to the
total space W = @ Wi.

The class of para-Kdhler manifolds is the smallest class, corresponding to the trivial irreducible
and invariant subspace {0} of W.
The class of almost para-Kahler manifolds corresponds to the subspace W, & W.

A class containing the locally conformal para-Kahler manifolds is the class W, & Ws. As in
the Hermitian case [107], the class of locally conformal para-Kéhler manifolds does not coincide
with W, @ Wk (see [93]). The situation on this class is explained in Section 4.4.
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The class of nearly para-Kihler manifolds, characterized by the condition (VxJ)X = 0 with
the usual notations. An example is Libermann’s quadric S§ with the structure given in [144]
(see [24]).

Conversely, there exist many definitions of particular cases of almost para-Hermitian manifolds
whose relation with the previous classification has not been studied. Among them, we recall here
the manifolds defined and studied in [247]:

Definition 4.6. An almost para-Hermitian manifold (M, g, J) is said to be an almost hyperbolic
O*-manifold if (VxF)Y + (V,xF)JY =0, X,Y € X(M), where V denotes the Levi-Civita
connection of g, and F is the fundamental 2-form.

4.4 Locally conformal para-Kahler manifolds

Locally conformal para-Kahler manifolds are the paracomplex analogs of locally conformal Kihler
manifolds, introduced in [248].

Definition 4.7. Let (M, ¢, J;) and (M, g2, Jo) be two almost para-Hermitian manifolds. They
are said to be locally conformally related if J; = J, and for every @ € M there exists an open
neighbourhood U of z such that g; and g, are conformally related in U.

Given a 2n-dimensional almost para-Hermitian manifold (M, g, J), its Lee form @ is the 1-form
on M defined by 8(X) = —(1/(n —1))0F(JX).

Proposition 4.8. ([93]) An almost para-Hermitian manifold (M, g, J) is locally conformally re-
lated to a para-Kahler manifold (M, go, J) if and only if N =0, dF+0AF =0 and df = 0, where
N denotes the Nijenhuis tensor of J and 0 the Lee form of (M, g, J).

Remark 4.9. Let = be the tensor field on the almost para-Hermitian manifold (A, g, J) given by
9(2(X,Y), Z) = (dF + 0 A F)(X,Y, Z). The three tensor fields N, = and df are global conformal
invariants of the structure. Moreover, it should be noted that if one defines a tensor field T on M
by the formula

g(T(X,Y),Z) = (VxF)(Y, Z) - ﬁ{émﬂg(x, Z) ~ 6F(Z)g(X,Y)

+O0F(JY)g(X,JZ) - 6F(JZ)g9(X,JY)}, X,Y,Z e X(M),
then the following can be proved:
Proposition 4.10. ([93])

(1) The tensor field T is a global conformal invariant.

(2) T=01ifand only if N =0 and dF + 6 A F =0, or equivalently, if and only if
VaBeV, VgV eH, ABeV, U,VeHanddF +0ANF =0.

From Propositions 4.8 and 4.10 it follows that any para-Hermitian manifold locally conformally
equivalent to a para-Kdhler manifold is a manifold which belongs to the class Wy & Ws. We also
note that the pair (T, df) is the analog of the Weyl conformal tensor of Riemannian geometry. An
example of an almost para-Hermitian manifold with T = 0 but which is not locally conformally
equivalent to a para-Kahler manifold is given in [93].



Example 4.11. ([25]) The product manifold M = S* x HZ'}(r), r > 0, n € {2,3,...}, with
the structure given in that reference, is a locally conformal para-Kahler manifold which cannot be
globally conformal para-Kéahler.

Remark 4.12. Other classifications of almost para-Hermitian manifolds.
There are other classifications of almost para-Hermitian manifolds:

(1) A classification related to the parallelism properties of the structural distributions is given
in [81].

(2) In [183] (and independently in [104]) the vector space K (Af) of (0,4) tensors which satisfy the
same symmetries as the Riemann-Christoffel curvature tensor R and also the new symmetry
satisfied by para-Kahler manifolds R(X,Y,JZ, W) + R(X,Y,Z,JW) = 0 is considered.
With regard to the metric induced by ¢ in this vector space, it decomposes in 3 invariant
orthogonal subspaces: K(M) = K;(M) & Ky(M) & Kg(M), where

Ki(M) = {Re€ K(M): Ris of constant paraholomorphic curvature},
Ky(M) = {Re€ K(M): Ris of null scalar curvature},
Kg(M) = {Re€ K(M): R has null Ricci tensor and null scalar curvature}.

In [183] the expression of the components of a vector R € K (M) relative to this decom-
position is given: R = R; + R, + Rp, and Rp is called the Bochner tensor associated
to R.

Corollary 4.13. ([104]) A para-Kdhler manifold M with dimension 2n > 4 has constant para-
holomorphic sectional curvature if and only if M is Einstein and Rg(M) = 0.

4.5 Compatible linear connections

The description of the family of connections compatible with an almost paracomplex structure or
with an almost para-Hermitian structure follows immediately from the expression obtained in [47]
for the general case of Banach vector bundles: Let J be a nonsingular (1,1) tensor field and g a
nonsingular (0,2) tensor field on a manifold M, and consider the relations

(CL) J2:€11$ (b) tg:‘::Qg? (C) 1“]0.9:5390‘]7

where I is the Kronecker tensor on M and £1, €9, €3 = 1. Then:
(i) If J satisfies the condition (a), the family of connections parallelizing J is given by

[¢]

(4.4) V=20,(V)+¥;0);

(ii) If g satisfies the condition (b), the family of connections parallelizing g is given
by

<]

(4.5) V =3,(V)+ Vy(0);

(iii) If J and g satisty (a), (b) and (c), the family of connections parallelizing J and g is given
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(4.6) V= ®y00,(V)+ Uy0U,(0):

where % is a fixed arbitrary linear connection, o any (1,2) tensor field on M, and ®;, ®
U, and VU, are given by
o] o 1 [¢]
(I)J<V)X:VX+5J_1OVXJ7 q’J(O’)_ (O')S-f—J OO’XOJ)7

[

° 1 o
q)g(V)X =Vx+ 59“1 °Vxg, \119<0'>

l\DI»—il\Dl»—-\

(ox +g 'ooxog),

for every X € X(M).

Formula (4.4) gives, for £, = 1, the family of connections compatible with an almost para-
complex structure. Formula (4.5) furnishes, for e5 = 1, the family of connections compatible with
a pseudo-Riemannian structure; and, for e, = —1, the family of connections compatible with an
almost symplectic structure. Formula (4.6) gives, for 1 = € = —e3 = 1, the family of connections
compatible with an almost para-Hermitian structure.

The family of linear connections parallelizing an almost para-Hermitian structure can be also
obtained immediately from the general expression given in [196]. In [156], from the quoted general
results in [47], the family of connections compatible with an almost para-Hermitian structure is
also obtained. On the other hand, some partially adapted connections are obtained in [197].

Given an almost para-Hermitian manifold (M, g, J), there exists a unique linear connection V,
with torsion T, satisfying the conditions:

Vg=0, VJ=0, T(PX,QY)=0, X,YeZX(M),

where LT L]
P=—lt Q-—=,

are the projectors of J. This connection is called the canonical connection.
Let T*(M) and T~ (M) denote the eigenbundles of J, corresponding to the eigenvalues +1
and —1 respectively. Then, we have for V:

VX~ = QX X,
g(Vx+Y",Z7) = X*Q(Y+ Z7)—g([X*, Z7],YT),
g(Vx-Y, Z7)=X"g(Y™.Z7) - g([X~, Z7],Y "),

XY, ZteTH (M), X°,Y~,Z" € T~ (M).

Vy-XT = PlX™, X7,

Let us consider the tensor
\I}LY.Y.Z):Q(X,T(Y.Z)), ‘Y'YZG}C(A[)v

where T is the torsion tensor of the canonical connection of the almost para-Hermitian structure
(g9,J) on the manifold M. One can prove that ¥ has the same symmetries as the tensor ®
considered in [20] and [93] to obtain the classifications of almost para-Hermitian manifolds. Hence,
one can obtain a classification of almost para-Hermitian structures given in terms of ¥ which
coincides with the classification based on ® but with different characterizations.
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4.6 Reflectors

Reflectors were introduced in the study of neutral surfaces in 4-dimensional neutral pseudo-
Riemannian manifolds [117], and they are the neutral space analogs of the twistor spaces of
Riemannian geometry. We recall here some basic facts and definitions from [117], where many
other results on reflectors are obtained.

Let V' be a real vector space of even dimension endowed with a neutral metric g and a paracom-
plex structure J such that (V, g, J) is para-Hermitian. If (V. g) is oriented, then the paracomplex
structures J divide into two disjoint categories, called positively or negatively oriented, depending
on whether the adapted null frames with respect to which the structure is defined are positively
or negatively oriented.

Let now G1,(2,2) be the Grassmannian of oriented neutral planes in R3. The non-semisimple
group SO(2,2) acts transitively on G;1(2,2), which becomes a homogeneous space Gy1(2,2)
S0(2,2)/50(1,1) x SO(1,1). It can be proved that G;1(2,2) admits an SO(2, 2)-invariant para-
Hermitian structure arising from a SO(2, 2)-invariant metric related to the Maurer-Cartan form
of SO(2,2). Consider the groups B defined as follows: B. is the group B(2), particular case for
n = 2 of the usual almost para-Hermitian structural group

B(n) = {( A ) €GLEnR): A€ GL(n,]R)} ,

and B_ is the conjugate group of B, in O(2,2) defined by
B_={A€S0(2,2): Al_=1_A, I =diag(-1,1,1,-1)}.

Let Sy = S0O(2,2)/By, and let m1: SO(2,2) — SO(2,2)/Bs = S+ denote the projections. S
and S_ are endowed with certain SO(2, 2)-invariant neutral metrics g, and g_, respectively, each
with Gauss curvature equal to 2. There is moreover an SO(2, 2)-equivariant isometry

(4.7) V= (Y4, 0-): G1a(2,2) — S4 x S_.

Let now f: S — R} be an isometric immersion of an oriented neutral surface, and let its Gauss
map be v;: S — G11(2,2). From the above splitting of the Grassmannian the Gauss map factors
into v = (@4, ¢-), where ¢y = 14 o;. The maps ¢ are called the reflector maps of f, and are
the analogs of twistor maps for surfaces in R*.

Let (M,g) be a 4-dimensional neutral pseudo-Riemannian manifold, that is, such that the
pseudo-Riemannian metric g has signature (++ ——), and denote by SO(M) the bundle of ortho-
normal frames on M. If (M, g) has holonomy, there is no unambiguous way to transport tangent
2-planes parallelly to a fixed origin of M. In order to generalize the Gauss map for an oriented
neutral surface f: S — (M, g), one can consider the Grassmann bundle Gy (M) of oriented
neutral planes at the points of M. Generalizing the previous situation, one can consider sections
of the Grassmann bundle

G11(M) = {(p, P) : P is an oriented neutral plane in T,(M)} .
From the standard action of SO(2,2) on Gy ;(2,2), we have
Gl.l(f\[) ~ SO(AI>X50(2‘2)G1.1<2. 2) = SO(]\[)/SO(L 1) X SO(L 1) .

The Gauss lift of f is given by the map v;: § — G11(M), where v¢(p) = (f(p), £ T,M).
The splitting of Gy 1(2,2) given in (4.7) leads us to consider the reflector bundles

(4.8) re: Zy — M,
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defined by
Z+ ={(p,J) : J is an almost para-Hermitian structure
on (T, M, g|,) of + orientation}
~ SO(A[) X50(2,2) S:t = SO(J‘[)/Bi .

The projection map is defined by r.(p, J) = p.

Let 04 denote the natural projection o+: SO(M) — Zi = SO(M)/B.. There are natural
maps Y= G11(M) — Zs, where ¥4 (p, P) = (p, J+). The reflector lifts of f are ¢y = ¥ 0,
so that ¢4 : M — Z, are sections of (4.8) in the sense that r+ o o1 = f, i.e., they are sections
of f71Z. — M.

4.7 Submanifolds of almost para-Hermitian manifolds

The hypersurfaces of almost para-Hermitian manifolds are considered in [178], where it is proved
that they admit a hyperbolic contact structure. A condition for a hypersurface of this type with
vanishing curvature tensor to be conformally flat is also given. In [66], hypersurfaces in almost
para-Hermitian manifolds are studied.

Three types of submanifolds of an almost para-Hermitian manifold with the Killing property
in the sense of [57] are studied in [12], and it is proved that those submanifolds are minimal.

The immersions of a hyperbolic surface with the geodesic property in the sense of [203] into a
neutral pseudo-Riemannian manifold are studied in [13].

The study of degenerate hypersurfaces of almost para-Hermitian manifolds is initiated in [28].
The authors consider the general case, and then some important particular cases, as totally geo-
desic degenerate hypersurfaces, totally umbilical degenerate hypersurfaces and minimal degenerate
hypersurfaces.

A detailed study of degenerate hypersurfaces of almost para-Hermitian manifolds, including
the geometric structures induced on such submanifolds and the totally umbilical case is made
in [27].

) The classification of degenerate and non-degenerate submanifolds, and of CR-submanifolds
(see below) of a 4-dimensional almost para-Hermitian manifold is given in [77]. These classifica-
tions rely in the fact observed by the authors, that the geometry of a submanifold (M, g, J) of an
almost para-Hermitian manifold (M, g, .J) of any dimension is determined, to a high degree, by
dim(T,M N T,M*) and J(T,M). Their technique can be extended to higher dimensions.

General Cauchy-Riemann submanifolds (C R-submanifolds), and the special case of totally
umbilical Cauchy-Riemann submanifolds are studied in [22, 25, 75, 76]:

Definition 4.14. Let (N,g,J) be an almost para-Hermitian manifold. A pseudo-Riemannian
submanifold M of N is said to be a C'R-submanifold if the following conditions are satisfied:
(1) The metric gas = g|as is of constant signature and rank.
(2) There exist two differentiable distributions D and D+ on M satisfying:
(i) D is invariant, i.e., JD, = D, for all p € M.
(ii) D* is anti-invariant, i.e., JDPL C (T,M)* for all p € M.
(iii) T,M = D, & Dy, for all p € M, and D,, D; are mutually orthogonal.
Moreover, we have the following types of C'R-submanifolds:
(a) Invariant, if D+ = {0}.
(b) Anti-invariant, it D = {0}.
(¢) Proper CR-submanifold, if D # {0} and D+ # {0}.
(d) Generic, if dim Dpi =dim(T,M)* #0, pe M.
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4.8 Examples of C R-submanifolds

(1) ([8)) Every principal co-isotropic submanifold of index 1 of a para-Kahler manifold with the
Poisson property M is a proper C R-submanifold of M such that both D and D+ are involutive.

(2) ([22]) Consider the 3-dimensional torus 7% = S' x S' x S ! endowed with the Riemannian
metric g which is the product of the standard metrics on the factors S' which makes the vector
fields {X;}, i = 1,2,3, representing the parallelism, an orthonormal global frame such that X3
is normal to T2 and X; tangent to S* x {8} x {6}, where S* x {6} x {6} — T? x {0} — T°.
Let M = T3 x T3 and define on M the pseudo-Riemannian structure § and the almost product
structure J given at each point (p,q) by

- -9 0 0 I
g:( Og g) and J<p-q>:<[3 03>

with regard to {(X;,0), i = 1,2,3; (0, X)), k = 1,2,3}. Then, the manifold (M = T*xT?, 3, J)
is an almost para-Hermitian manifold which contains 72 x S' as a non-generic proper CR-
submanifold.

(3) ([22]) Let (M;, i, Ji), i = 1,2, be two almost para-Hermitian manifolds with dim Af; > 2.
Then the product manifold M; x M,, endowed with

_ glO o J10
g-(o g2> and J—<0 Jz)’

is an almost para-Hermitian manifold and any pseudo-Riemannian hypersurface of M, is a proper
non-generic C R-submanifold.

(4) Some basic facts on C'R-submanifolds of almost para-Hermitian manifolds are stated in
([75, 76]). The authors give examples of C'R-submanifolds of paracomplex projective spaces, prove
that degenerate hypersurfaces are C' R-submanifolds if and only if they are invariant and give a
classification of submanifolds and C R-submanifolds of a 4-dimensional almost para-Hermitian ma-
nifold.

R. Rosca and other authors have also considered C' R-submanifolds in a para-Kéhlerian mani-
fold [208, 210, 212].

Many properties of the almost para-Hermitian manifolds structured by an 2-conformal con-
nection are studied in [14]. Similarly, in [15], several properties of the almost para-Hermitian
manifolds with geodesic connection are proved.

4.9 Homogeneous almost para-Hermitian structures

The classical characterization by Ambrose and Singer [11] of homogeneous Riemannian manifolds
in terms of a (1,2) tensor field S on the manifold, which is an extension of Cartan’s charac-
terization [40] of Riemannian symmetric manifolds (for which one has S = 0) is extended to
pseudo-Riemannian manifolds of arbitrary signature in [101]. The authors give the following:

Definition 4.15. A homogeneous almost para-Hermitian structure on the almost para-Hermitian
manifold (M, g,J) is a (1,2) tensor field S on M such that the connection V =V - S, where V
denotes the Levi-Civita connection of the metric g, parallelizes the metric g, its curvature R and
the tensor fields J and S.
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Theorem 4.16. ([101]) Let (M,g,J) be a connected, simply connected and complete almost
para-Hermitian manifold of dimension 2n. Then (M, g,J) admits a homogeneous almost para-
Hermitian structure if and only if it is a reductive homogeneous almost para-Hermitian manifold

(M =G/H,qg,J).

Notice that in the Riemannian case a homogeneous manifold is always complete and reductive.
A classification of homogeneous almost para-Hermitian structures is given in [102], where 175
classes are obtained.

Example 4.17. ([101]) Libermann’s quadric [144] S§ can be viewed either as the pseudo-Rie-
mannian manifold of constant curvature O(3,4)/0(3, 3), which is pseudo-Riemannian symmetric,
with corresponding homogeneous pseudo-Riemannian structure S = 0, or well as the homogeneous
space G5/SL(3,R), where G} denotes the exceptional simple Lie group which is the second real
form with fundamental group Z of the complex group of which the usual group Gs is the compact
real form. The isotropy group is the special paraunitary group isomorphic to the real special linear
group of order 3. The homogeneous space G5/SL(3,R) admits an almost para-Hermitian structure
(g,J) which is not para-Kahler, but nearly para-Kéhler [24], and it is a reductive almost para-

1
Hermitian manifold with homogeneous almost para-Hermitian structure S = ~3 J o (VJ), where
V denotes the Levi-Civita connection of g.

4.10 Examples of para-Hermitian manifolds

(1) ([49]) Para-Hermitian manifolds of a certain type arise as a particular case from a more general
situation: that given on the tangent bundle T'M of a manifold M endowed with a linear connection
and a tensor field of type (1,1) or (0,2). Specific examples of para-Hermitian structures are given
by Cruceanu’s structures considered in Section 4.2, that is, (P,Q), (Q, K), (P,©) and (@, ©) on
TM or (P,Q), (Q,K) and (Q,Q) on T*M, if the almost paracomplex structures P and Q are
integrable.

~ On the other hand, the behaviour of para-Hermitian structures on a manifold with regard
to the action of the multiplicative group of nonsingular tensor fields of type (1,1) on the tensor
algebra, on its algebra of derivations and on the affine module of linear connections arises as a
particular case in [51].

(2) ([117]) The 2-dimensional case has some interesting features: Let (M, g) be an oriented 2-
dimensional neutral manifold. The metric g and the orientation of M induce a unique almost
para-Hermitian structure J, which is automatically integrable since M is 2-dimensional, and it
can thus be proved that there exists a kind of “isothermal coordinates” x,y, such that the metric
can be locally written as g = 2pdx dy, where p is a positive C'*° function.

(3) ([117]) Let G1.1(2,2) =~ SO(2,2)/SO(1,1) x SO(1, 1) be the Grassmannian of oriented neutral
planes in Ri. Then G,1(2,2) admits a para-Hermitian structure obtained from an SO(2,2)-
invariant metric related to the Maurer-Cartan form of SO(2,2).

(4) Some examples of (almost) para-Hermitian manifolds which are hypersurfaces of hyperbolic
almost paracontact manifolds are given in [240].

Remark 4.18. Subtypes of almost para-Hermitian manifolds
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(a) The almost para-Hermitian manifolds with exterior recurrent line element splitting are
studied in [62].

(b) The almost para-Hermitian manifolds structured by a parallel conformal connection are
considered in [63].

5 Para-Kahler manifolds

5.1 Definitions and first properties

Definition 5.1. A para-Hermitian manifold (M, g, J) is said to be a para-Kdhler manifold if
dF = 0. From Theorem 4.2, we deduce that, equivalently, a para-Kdhler manifold is an almost
para-Hermitian manifold such that VJ = 0, where V denotes the Levi-Civita connection of g. We
can also define, from [172] or from the classification in Subsection 4.3, a para-Kdhler manifold as
a pseudo-Riemannian manifold of dimension 2n endowed with two n-dimensional totally isotropic
and parallel distributions V and ‘H such V N'H = {0}.

If we consider a connected (almost) para-Hermitian or para-Kéhler manifold (M, g, J) and
denote by I(M, g) the isometry group of M with respect to g, then the automorphism group of
(M, g,J) is defined as

Aut(M, g, J) = Aut(M, g) N Aut(M, J),

which is a closed subgroup of Aut(M,g), and consequently a Lie transformation group of M.
If Aut(A1,g,J) acts transitively on M, then (M,g,J) is called a homogeneous (almost) para-
Hermitian or para-Kdhler manifold, as long as it is (almost) para-Hermitian or para-Kahler.
Notice that a homogeneous almost para-Kahler manifold is a homogeneous symplectic manifold
with respect to the fundamental form F and Aut(M, g, J).

Canonical forms for the metrics of all non-decomposable locally symmetric para-Kéhler spaces
were obtained in [181]. We recall here the following:

Theorem 5.2. ([181]) The metric of a non-decomposable locally symmetric 4-dimensional para-
Kdhler space can be expressed in one of the following ways:

(1) g = M22da® + 2zt do dy + °dy?) + 2dx dz + 2dy dt.

(2) g = \22dy? + 2dz dz + 2dy dt.

(3) g = 2%dx dy + (A2 + zt)dy? + 2dz dz + 2dy dt,
where A denotes a constant.

In cases (1) and (2), the spaces are FEinstein spaces, the scalar curvature being non-zero in
case (1) and zero in case (2). Moreover, those metrics are canonical forms for the metrics of all
symmetric harmonic 4-spaces which do not have constant curvature. In case (3) the spaces are
not Einstein spaces and so they are not harmonic.

The Riemann-Christoffel curvature tensor of para-Kéhler manifolds has the following new
symmetry:

Proposition 5.3. Let (M, g,J) be a para-Kdhler manifold. Then its Riemann-Christoffel curva-
ture tensor R satisfies the usual symmetries and also the symmetry

R(X,Y,JZ,W)+ R(X,Y,Z,JW)=0, X,Y,Z,W e X(M).
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A detailed and thorough study of curvature and curvature functions on para-Kéhler manifolds
is given by Vézquez Lorenzo in [250]. He introduces (among other concepts) anti-paraholomorphic
sectional curvature and from this obtains many results as with paraholomorphic sectional curvature.

5.2 Examples of para-Kéihler manifolds

(1) ([144]) The para-Kihler structure on R*" given by the pseudo-Euclidean inner product (, )
and the almost product structure J.., defined by

~I, 0 (0 I,
<3>:< O Iﬂ)s Jcan_(ln 0)‘

where both matrices are taken with respect to the canonical basis of R?", is called the canonical
para-Kdhler structure on R?".

(2) A bilagrangian symplectic manifold is a C* manifold endowed with a closed 2-form F, a
pseudo-Riemannian metric g and a couple of supplementary integrable distributions D., D_,
which are isotropic with respect to the metric g, that is, F|p, = 0 and F|p_ = 0.

Such a manifold is said to be a parallel bilagrangian symplectic manifold if VF = 0, where V
denotes the Levi-Civita connection of g. The relation of the above definitions (see [248]) with the
definitions of almost para-Kahler and Kahler manifolds is clear.

(3) ([119]) Para-Kihler manifolds naturally appear in the geometry of negatively curved manifolds.
Suppose that N is a simply connected complete Riemannian manifold with sectional curvature
K < —1. Then the unit tangent bundle S(N) of N is fibred over the space M of geodesics of N
so that each fibre is an orbit of the geodesic flow of N. The exterior derivative df of the canonical
contact form of S(N), which is invariant by the geodesic flow, is pushed forward to a symplectic
form F of M by the fibre bundle S(N) — M.

On the other hand, we have that for a closed Riemannian manifold N of negative curvature,
the geodesic flow defined in the unit tangent bundle S(N) is an Anosov flow. Then the splitting
S(N) = E~¢ E°® E*, which are called the Anosov splitting associated with the geodesic flow @,
of N, determines foliations £~ and £ called the (strongly) stable and unstable foliations of ¢.

In the case of complete simply connected Riemannian manifolds with sectional curvature < —1,
the stable and unstable foliations £+ and £~ of S(N), descend to foliations F* and F~ of M,
which are transverse Lagrangian foliations of (M, F'). We thus have an almost para-Kahler ma-
nifold, namely (M, F, FT, F~), associated to the negatively curved manifold N. Moreover, in the
case when N is the universal covering of a closed Riemannian manifold whose Anosov splitting is
C™>, the Lagrangian foliations F~ and F* are smooth, and M is para-Kahler.

(4) ([50]) The almost para-Hermitian structure (G, J) on the tangent bundle T'M of a Riemannian
manifold (M, g) endowed with a linear connection V is almost para-Kahler if and only if the pair
(g, V) is cotorsionless; that is, if its cotorsion 7 vanishes everywhere. We recall that the cotorsion
is defined in [49] as

T(X,Y,Z) = (Vxg)(Y. Z) = (Vyg)(X, Z2) + g(T(X,Y), Z), X,Y,Z € X(M),

T being the torsion of V. The structure (G, J) is para-Kahler if and only if (g, V) has vanishing
cotorsion and curvature. Notice that G above coincides with Q in the relations (3.3) and that J
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above coincides with P in the relations (4.2). As for the cotorsion, it coincides with the exterior
covariant differential of g given by Dg on page 352.

(5) ([82]) The cotangent bundle T*M of a flat Riemannian manifold (M, g) admits a para-Kahler
structure.

(6) ([82]) Let M = R? with e; = (1,0) and es = (0, 1) as the usual basis. Define a metric g on M
such that for every point (x,y) € M, g is given by the matrix

%e“y 0 ‘
0 —%ez’y

Therefore (M, g) is not flat. If one takes D, D_ to be the 1-distributions induced by e; + €5 and
e1 — ey respectively, then D, and D_ are isotropic. If J is the almost product structure given by
D. and D_ then (M, g, J) is a para-Kéhler manifold which is not flat.

(7) ([82]) Every 2-dimensional almost para-Hermitian manifold is para-Kéahler.

(8) ([33]) Let (M, g) be a para-co-Kéhler manifold, ¢ an almost cosymplectic structure on M,
and H (M) the set of horizontal vector subspaces of o. Then the hypersurfaces tangent to H (M)
are para-Kahler hyperspheres. See also [105] for the para-Kéahler hyperspheres.

5.3 Subtypes of para-Kihler manifolds

Some results on conformally flat para-Kdhler manifolds are obtained in [172], among which we
remark the following:

Theorem 5.4. Let M be a conformally flat para-Kdahler manifold. Then:
(1) M is locally flat if dim M > 6.
(2) M is locally symmetric and its scalar curvature vanishes identically if dim M= 4.
(3) If M has dim = 4, and the metric g of M is decomposable, then M is either:

(a) locally flat,

(b) locally a product My x M, of two 2-dimensional para-Kahler spaces My and M, where
M is of constant Gauss curvature K > 0 and My is of constant Gauss curvature — K.

(4) If M is 4-dimensional and the metric is not locally decomposable, then in appropriate coor-
dinate systems, the para-Kahler structure of M can be given as in Theorem 5.2 with A = 0.

We also remark the plentiful results obtained by Rosca and his coworkers on para-Kéhler
manifolds endowed with supplementary structures.

Several tensors fields on almost para-Hermitian, almost para-Kahler and para-Kahler mani-
folds are considered in [18], where, among other results, necessary and sufficient conditions for a
manifold in one of these classes to belong to a more restricted class are obtained.

We also have the following particular cases of para-Kahler manifolds:

(1) Para-Kdhler manifolds having the Poisson property ([17]). Consider a para-Kahler ma-
nifold (M,g,J), and let F = Zﬁk AO"F k= 1,...,n, be the canonical symplectic 2-form.
k
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The manifold (M, g, J) is said to have the Poisson property if for each p € M, there exists a
neighbourhood U such that the Poisson brackets {6%,6"*},, p € U, of all the pairs (6%, ")
with regard to the symplectic structure of M are zero.

Theorem 5.5. ([17]) Any para-Kdhler manifold M having the Poisson property has the divergence
property; that is, each p € M has a neighbourhood with an adapted local frame whose vectors have
vanishing divergence.

(2) Other types of para-Kahler manifolds are considered:

(a) In [7, 16], where the para-Kdhler manifolds with the concircular property are defined and
studied.

(b) Many properties of the para-Kdhler manifolds with self-orthogonal connection are proved
in [36].

(¢) In [79], where the para-Kdhler manifolds having the skew-symmetric Killing property are
introduced and studied.

5.4 Submanifolds of para-K&ihler manifolds

(1) ([22]) The pseudosphere S2"~1(r) and also the pseudohyperbolic space H2"~}(r) of radius r
are examples of totally umbilical C' R-submanifolds of the para-Kéhler manifold (R, {, }, Jean)-

(2) The CIC R-submanifolds (i.e., co-isotropic Cauchy-Riemann) of para-Kéahler manifolds having
the self-orthogonal Killing property are studied with detail in [64].

Remark 5.6. Characteristic classes of para-Kahler manifolds. The explicit expression of the
Pontrjagin forms of Bochner flat para-Kahler manifolds with constant scalar curvature has been
obtained by Bejan in [23].

The fact that every almost para-Hermitian manifold admits an almost complex structure is
proved in [82]. Thus, the usual obstructions for this structure-in terms of characteristic classes
can be useful for the almost para-Hermitian case.

6 Transformations

6.1 Paraholomorphic curvature tensors

Prvanovié’s paper [188] deserves a special mention, as it not only contains several interesting de-
finitions and results on paracomplex and para-Hermitian geometries, but encouraged the research
on the subject, since one can see many differences between complex and paracomplex geometry.
Prvanovi¢ introduced, among other things, the paraholomorphic projective curvature tensor, and
also gave the explicit expression of the curvature tensor for spaces with constant paraholomorphic
sectional curvature. On the other hand, the paraholomorphically projective curvature tensor is
defined in [239] and a proof of the fact that if a manifold is paraholomorphically projectively flat,
then it has constant paraholomorphic sectional curvature, is given.
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Definition 6.1. ([188, 198]) The paraholomorphic projective curvature tensor P of a para-Kahler
manifold (M, g, J) with dimension 2n is defined as

P(X,Y)Z = R(X,Y)Z - {S(Y,2)X — S(X,2)Y

2(n+1)
+8(Y,JZ)JX = S(X,JZ)JY —2S(X,JY)JZ}, X.,Y,Z <€ X(M),

where R and S denote respectively the curvature tensor and the Ricci tensor.

Theorem 6.2. Let (M,g,J) be a para-Kdihler manifold of dimension > 2. Then it is para-
holomorphically projectively flat if and only if P = 0 or, equivalently, if (M,g,J) has constant
paraholomorphic sectional curvature.

Bejan [25], by using Prvanovi¢’s paraholomorphic curvature tensor, gives some results on the
Pontrjagin classes of a paraholomorphically projectively flat manifold and on the Pontrjagin classes
of a para-Kahler space form.

On the other hand, three curvature tensor fields on a para-Kdhler manifold are defined in
[192, 193]: the H-conformal curvature tensor, the H-concircular curvature tensor and the H-
conharmonic curvature tensor. Some relations among them, and some properties of H-concircular
flatness are also given.

Definition 6.3. ([192]) Let (M, g, J) be a 2n-dimensional para-Kahler manifold with curvature

R and scalar curvature p. The H-concircular curvature tensor T is defined by

- _ , p - o
T(X)Y,Z) = R(X,Y)Z — m{g(}, )X — g(X, 2)Y

+g(JX, Z)JY — g(JY, 2)JX + 29(JX,Y)JZ}, X.Y.Z € X(M).

The so-called conformal connection on a para-Kéahler manifold is defined in [190]. The corres-
ponding Bochner tensor is obtained and studied there.

6.2 Geometric vector fields

When one has an almost product structure J on a manifold, the concept of geodesic curve can be
generalized to that of paraholomorphically planar curve:

Definition 6.4. ([188]) Let (M, J) be an almost paracomplex manifold endowed with a linear
connection V. A paraholomorphically planar curve (t) is a curve in M such that

Vo' = ft)y + hit)Jy .

where f(t) and h(t) are functions of the parameter t. A paraholomorphically projective vector field
is a vector field on (M, J) such that its local 1-parameter group of transformations maps each
paraholomomorphically planar curve into another.

Paraholomorphically projective vector fields were studied in [78], and from there we recall some
of the results obtained:

Theorem 6.5.

(1) Let (M, J) be a locally product manifold endowed with a torsionless J-connection V. A vector
field X on (M, J, V) is a para-holomorphically projective vector field if and only if:
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(a) Lx-] = O,'
(b) There exists an 1-form 6 on M such that

(LxV)(Y, Z) = 0(Y)Z + 0(2)Y +0(JY)JZ + 0(JZ)JY.

(2) Let X be a paraholomorphically projective vector field on a para-Kdihler manifold (M*", g, J).
If 9 denotes the I-form associated with X, in the sense of (b) in (1) above, then
6= (1/(2n+ 2))d(div X).

(3) Let X be a paraholomorphically projective vector field on a para-Kdhler-Einstein manifold
with dimension 2n > 2 and nonzero scalar curvature p, 0 the 1-form associated to X, and

A, A, respectively, the flat and the complete Laplacian on M. Then AG = 2A0 = (p/n)6.

6.3 Other transformations

Dzavadov proves in [68] that the group of conformal transformations of the paracomplex space
of any dimension, endowed with a canonical metric, is isomorphic to a group of linear fractional
transformations. .

In [51] one can find a study of the behaviour of many classes of geometric structures with
regard to the automorphism on the tensor algebra of the manifold A originated by a nonsingular
(1,1) tensor field on M. The author proves that an almost: paracomplex, para-Hermitian or
para-Kahler structure is transformed into another structure of the same type, but that if the
prefix “almost” is dropped, then if one wants preserve the type, some special conditions must be
imposed.

7 Para-Hermitian symmetric spaces and para-Hermitian
homogeneous spaces

Para-Hermitian symmetric spaces are a subfamily of pseudo-Riemannian symmetric spaces, having
relations with symmetric spaces of Hermitian type — introduced by ’Olaffson and Qrsted [169] and
independently by Matsumoto [149], and classified by Doi [61] — and with regular symmetric spaces
[168] (see Subsection (7.6)). As a general result, we have that all the para-Hermitian symmetric
spaces are diffeomorphic to the cotangent bundle of another Riemannian symmetric space, which
is sometimes a Hermitian symmetric space (see Table in 7.2).

7.1 Definitions and first results

Definition 7.1. [127] We say that a connected almost para-Hermitian manifold (M, g,J) is a
para-Hermitian symmetric space, if for each point p € M there exists a paraholomorphic isometry

sp € Aut(M, g, J), called the symmetry at p, such that:
(1) s7 =id.
(2) p is an isolated fixed point of s,.

Proposition 7.2. Any para-Hermitian symmetric space (M, g,J) is homogeneous para-Kdihler,
and hence homogeneous symplectic.
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Definition 7.3. Let G be a connected Lie group and H a closed subgroup of G. The coset
space G/ H is called a para-Hermitian symmetric coset space if the following three conditions are
satisfied:

(1) There exists an involutive automorphism ¢ of G such that (G, H,o) is a symmetric triple;
that is, if G, denotes the subgroup of all the o-invariant elements in G, and G2 the identity
component of G,, then we have G2 C H C G,.

(2) Thereexist a (1,1) tensor field J and a pseudo-Riemannian metric g on M such that (M, g, J)
is almost para-Hermitian.

(3) Both g and J are G,-invariant.

Proposition 7.4. Any para-Hermitian symmetric space can be represented as a para-Hermitian
symmetric coset space. Conversely, any para-Hermitian symmetric coset space is a para-Hermitian
symmetric space.

Let g be areal Lie algebra, ) a subalgebra of g and ¢ an involutive automorphism of g. If b is the
set of o-invariant points in g, then {g, , o} is called a symmetric triple. Let G be a connected Lie
group with Lie algebra g, and H a closed subgroup of G with Lie algebra h. Then we say that the
coset space G/H is associated with {g,h, o} if o can be extended to an involutive automorphism
— denoted by the same letter o — of G such that, with the above notations, G2 C H C G,.

Proposition 7.5. ([127]) Let {g.h,0} be a symmetric triple, and g = ¥ + m the eigenspace
decomposition induced by o. Suppose that a coset space G/H is associated with {g,h,o}. Then
G/H is a para-Hermitian symmetric coset space, if and only the following (Cy) is satisfied:

(Cy) There exist a linear endomorphism Jy on m and a non-degenerate symmetric bilinear form
(, ) on m such that:

(1) J2 =id.

(2) [Jo. AdnH] = 0.

(3) (JoX,Y) + (X, JoY) =0, X,Y €m.

(4) (Adwh)X, (Aduh)Y) = (X,Y), X.Y €m, h € H.

Definition 7.6. ([127]) Let {g,h, 0} be a symmetric triple and g = h + m the eigenspace decom-
position induced by o. Suppose that {g, h,c} satisfies the following condition (C5):

(C3) There exists a linear endomorphism Jy on m and a non-degenerate symmetric bilinear form
(, y on m such that:

(1) J,
(2) [Jo, admh] =0.
3) (X, Y)Y+ (X, hbY)=0, X,Y €m.
(4) ((ad X)V1, Ya) + (¥, (ad X)Ys) =0, X €b, Vi,V €m.

Then {g,h,0,Jo,{, )} is called a para-Hermitian symmetric system. Moreover, if the pair
{g, b} is effective, then it is called an effective para-Hermitian symmetric system. We recall that

the pair (g, o) is called effective if the representation ady: b — End(q) given by X — ad(X)], is
faithful.
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Proposition 7.7. ([127]) Let {g,h,0,Jo, {, )} be an effective semisimple - taking g as being
semisimple — para-Hermitian symmetric system. Then there exists a unique element Zy € b such
that b is the centralizer ¢(Zy) of Zy in g and Jo = admZo.

Let {g, b, 0} be an effective semisimple symmetric triple. Consider the following condition (C3):

(C5) There exists an element Z € g such that ad Z is a semisimple operator having only real
eigenvalues and such that § = ¢4(Z).

It can be proved that conditions (Cy) and (Cj) are equivalent, and that, with the above
notations, the symmetric bilinear form (,) coincides with the restriction of the Killing form of g
to the (—1)-eigenspace m of ¢ in g.

Kaneyuki and Kozai give in [127] several other important facts concerning para-Hermitian
symmetric spaces. We recall some of their results:

Theorem 7.8. Let {g,h,0} be an effective semisimple symmetric triple. Then:

(1) Let G/H be a coset space associated with the triple. Suppose that G/H is a para-Hermitian
symmetric coset space. Then {g, b, o} satisfies the condition (C3) and H is an open subgroup
of the centralizer C(Z) in G. Conversely:

(2) Suppose {g.h, o} satisfies (Cs). Then there exists a connected Lie group G with Lie algebra
a such that the coset space G/C(Z) is associated with {g,h, o}, where C(Z) is the centralizer
of Z in G. Furthermore, for an arbitrary open subgroup H of C(Z), the coset space G/H
is a para-Hermitian symmetric space. Moreover, there exists a covering manifold My of a
symmetric R-space such that M = G/H is diffeomorphic to the cotangent bundle T™ My
of My.

Proposition 7.9. Let G/H be an affine symmetric coset space. Suppose G is simple. Then there
is only one G-invariant paracomplex structure up to sign.

7.2 Classification and structure of semisimple para-Hermitian
symmetric spaces

Every para-Hermitian symmetric space with semisimple group is diffeomorphic to the cotangent
bundle of a covering manifold of a Riemannian symmetric space of a particular type, called R-
symmetric spaces. So, the para-Hermitian symmetric spaces are candidates to be phase spaces of
dynamical systems. Since we have, for instance, the phase space T*(SO(3)) of the rigid solid, we
are probably faced with important physical situations.

The infinitesimal classification of para-Hermitian symmetric spaces with semisimple group up
to paraholomorphic equivalence is obtained in [127] and [120], and in [127] the following table is
given:
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PARA-HERMITIAN SYMMETRIC SIMPLE LIE ALGEBRAS

(8:h) M

(sl(m +n,R),sl(m,R) + sl(n,R) + R) Gpn(R)

(sl(m +n,C),si(m,C) +sl(n,C) + C) Gpmn(C)
(su*(2m + 2n),5u*(2m) + su*(2n) + R) Gp.n(H)
(su(n,n),sl(n,C) + R) U(n)
(so(n,n),sl(n,R) + R) SO(n)
(s0*(4n),su*(2n) + R) U(2n)/Sp(n)
(s0(2n,C),sl(n,C) + C) SO(2n)/U(n)
(so(m+1,n+1),50(m,n) +R) Qm+1.n4+1(R)
(so(n+2,C),50(n,C)+C) | Qn(C)

(sp(n, ), sl(n, R) + R) U(n)/O(n)
(sp(n,n),su"(2n) + R) Sp(n)
(sp(n,C),sl(n,C) + C) Sp(n)/U(n)
(E},s0(5,5) + R) Goo(H)/Zo
(E4,s0(1,9) + R) P, (0)
(E§,50(10,C) + C) Eg/Spin(10) - T
(B E} +R) SU(8)/Sp(4) - Z
(E2 E6 +R) T - Eg¢/Fy

(Es, E5 +C) E-/Eg-T"

In the above list, G, »(F) denotes the Grassmann manifold of m-planes in F™*", where F =
R,C or H. @, »(R) denotes the real quadric in P, 1(R) defined by the quadratic form of
signature (m,n). Q,(C) denotes the complex quadric in P,.1(C). P,(Q) denotes the octonion
projective plane. The list on the right of the table contains those R-symmetric spaces Mg with the
property that if M = G/H is a para-Hermitian symmetric space corresponding to the symmetric
pair (g, h) associated to the specific Mg, then M is diffeomorphic to the cotangent bundle T* M,
of a covering manifold M, of M. Note the six Hermitian symmetric spaces, appearing on the
right.

Remark 7.10. We recall here the following definitions: Let G (resp. G) be a reductive irreducible
real (resp. connected complex) algebraic group. The quotient space M = G /U (resp. M = G/U)
by a parabolic subgroup U (resp. U) of G (resp. G) is called a R-space (resp. complex R-space).
For the definition of a symmetric R-space, which involves Dynkin diagrams, see, for instance, [242,
p. 82].

The structure of the (simple) group G of a para-Hermitian symmetric space M = G/H is
studied in [122], where Kaneyuki obtains a decomposition of G for the case in which the Weyl
group W(M) coincides with the Weyl group W (M*) of the fiber M* of the Berger fibration of
M (see [83]). That condition is not too restrictive. This decomposition — with intersection — is
G=KCH (0<l<r=dimC), where K is a o-stable maximal compact subgroup of G- and
o denotes the involutive automorphism associated to G —, C a split Cartan subgroup of G, Hy
the isotropy group of G at a point in M, and H; (1 <1 < r) the isotropy group of G on a point
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of the boundary of M in Kaneyuki’s compactification M of M. This is a partial generalization
of a result given in [83] and [219] on the decomposition of the group G of a semisimple affine
symmetric space M = G/H.

The isotropy group of a para-Hermitian symmetric space was studied in [128]. The number of
connected components and the structure of the identity component is obtained:

Theorem 7.11. Suppose {g,h,0} is an effective simple - that is, g is simple — symmetric triple
which satisfies condition (C3) in Section 7.1 for some Z € g. Let G/C(Z) be the coset space
associated with {g,b,0} in Theorem 7.8. Then:

(1) If g does not admit a complex Lie algebra structure, then C(Z) has at most 2 connected
components, and the identity component C°(Z) has a smooth direct product decomposi-
tion C°(Z) = S(Z) - R*(Z), where S(Z) denotes the (semisimple) commutator subgroup
[C%(Z),C%Z)) and RT(Z) = expRZ is the center of C°(Z).

(2) If g admits a complex Lie algebra structure which commutes with o, then C(Z) is connected
and has a smooth direct product decomposition given by C(Z) = S'(Z)-R*(Z), where S'(Z) =
[C(Z),C(Z)] exp RiZ and R (Z) = exp RZ. '

As is well-known, M. Flensted-Jensen’s knowledge of both the theories of group representations
and semisimple symmetric spaces, has permitted him to emphasize the important role of the affine
symmetric spaces in the theory of group representations (see [31, 84, 177]). In this spirit, Kaneyuki
studies in [121] the orbit structure of compactifications of para-Hermitian symmetric spaces. We
recall here the example given by him, which gives an idea of the general situation: Let H be the
hyperboloid of revolution in R? given by the equation z?+y?— 2% = 1. ‘H is viewed as the cotangent
bundle of the real projective space P;(R). H is written as the affine symmetric space SL(2, R)/R*,
where R* is identified with the subgroup of diagonal matrices in SL(2,R). The SL(2,R)-action
on H leaves invariant the two families L; and L, of generatrices of H, respectively. Through an
arbitrary point p € H there pass two generating lines [; € L; (i = 1,2), which meet the line of
stricture of H, viewed as P;(R), in two points ¢;. By assigning the pair (g1, g2) to the point p € H
we have an embedding of M into the 2-torus 7% = P;(R) x P;(R). The embedding maps L; or
L, into the meridians or the parallels on T2, respectively. The SL(2,R)-action on H is hence
transferred to the action on T? of the diagonal subgroup of SL(2,R) x SL(2,R). An elementary
argument shows that the torus T? is decomposed in two SL(2,R)-orbits: one is H and the other is
a 1-dimensional orbit diffeomorphic to P;(R). In [122], this phenomenon is generalized to higher
dimensions: Let M = G/H be a para-Hermitian symmetric space, which is diffeomorphic to the
cotangent bundle of a covering manifold of a symmetric R-space M. Let M= Mg x M. Then,
M s imbedded in M as a single orbit through the origin of M under the action of the diagonal
subgroup of G x G. Thus M can be viewed as a compactification of M. In [122] the orbit structure
of M is studied. Tt turns out that it is somewhat similar to the structure of the closure of an
irreducible bounded symmetric domain under its holomorphic automorphism group [135]. This
situation extends to the case of para-Hermitian homogeneous spaces (see Subsection 7.7).

7.3 Para-Grassmannian manifolds

These are the para-Hermitian symmetric spaces corresponding to the symmetric pairs (sl(m+n, F),
si(m,F) +sl(n,F)+F), where F = R, C or H, in Kaneyuki-Kozai’s classification. These manifolds
were studied by Kaneyuki, Kozai and Williams, and also — in the real case — in [89], where they
are named para-Grassmannian manifolds because they are spaces whose points are non-degenerate
subspaces. Their para-Kahler structure in the real and complex cases is explicitly given in [97].
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There the authors obtain a pseudo-Riemannian metric of Wong type [256], which is more general
than a Fubini-Study metric. Specifically, they state the following result (for more details see the
quoted paper):

Theorem 7.12. Let E be an (m + n)-dimensional F-vector space, where F =R or C, and E* its
dual space. Then the C¥ manifolds underlying the homogeneous spaces

Gmn(E® E*)p = SL(m +n,F)/S(GLy(m,F) x GLy(n,F)) and
Gun(E @ E*)g/Zy = SL(m +n,R)/S(GL(m,R) x GL(n,R)),

endowed with the para-Kahler structure given by the pseudo-Riemannian metric gz and the almost
product structure Jg, given in the charts (z¥, y¥) ([95], formula (2)), respectively by

gr=ReTr [ + VYt X)"HdYt dX —dY* X - (I+Y' X)™'. V' .dX}],
where X = (z¥), Y = (y), and

Je(X) =Re (i ® dz¥ —

u
ol

a
®dyd | (X —iI(X)),
e dit ) (X 1Y)
where I denotes the almost complex structure associated with the given complex manifold, are
the para-Hermitian symmetric spaces corresponding to the two families (sl(m + n,F),sl(m,F) +
sl(n,F) + F), where F = R or C, in Kaneyuki-Kozai’s infinitesimal classification of para-
Hermitian symmetric spaces with semisimple group.

Probably the main interest of the above result is that the knowledge of the para-Kéahler struc-
ture in those cases can be useful for knowing the para-Kahler structure in the other 16 cases in
Kaneyuki-Kozai’s classification.

A particular case of para-Grassmannians are the so-called paracompler models P,(B) (see
Section 8.2), which are models of spaces of non vanishing constant paraholomorphic sectional
curvature, similar in some aspects to the complex projective spaces P,(C). For instance, one
has the diffeomorphism P,(B) ~ SL(n + 1,R)/S(GLo(n,R) x GLy(R)), while we have P,(C) ~
SU(n+1)/S(U(n)x U(1)), and, as is well known, both SL(n,R) and SU(n) are real forms of the
complex group SL(n,C). P,(B) is the “real equivalent” of P,(C), in Berger’s sense [30].

Nevertheless, both spaces are quite different in other aspects. For example, we have a diffeo-
morphism P,(B) ~ T(S"), and moreover, although P,(C) has no Hermitian space forms [254],
P,(B) has a rich family of para-Kahler space forms (see [94, 95] and Subsection 8.3).

7.4 Para-Hodge manifolds

Definition 7.13. ([130]) A para-Kéhler manifold (MM, g, J) is called a para-Hodge manifold if the
cohomology class [F] of its fundamental 2-form F is an integral class in H?(M,R).

Example 7.14. ([130]) A para-Hermitian symmetric space with second Betti number by = 0 is
always para-Hodge. Let M be the cotangent bundle T* M, over a symmetric R-space My. Then
M is a para-Hermitian symmetric coset space of a semisimple Lie group. The para-Kahler metric
g of M is then induced by the Killing form of the Lie algebra of G. If My is one of the group
manifolds SO(n), U(n), Sp(n), U(2n)/Sp(n), or the sphere S™ (n > 2), then the second Betti
number of M vanishes, and so g is para-Hodge.
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Example 7.15. ([130]) Let (M, g,J) be a para-Hermitian symmetric space with simple auto-
morphism group Aut(M, g, J), where g is induced from the Killing form of G. Then (M, g, J) is
para-Hodge with by (M) = 0 if and only if M is the cotangent bundle of a covering manifold of
a symmetric R-space M{, which is not the Silov boundary of an irreducible symmetric bounded
domain.

For an effective semisimple triple {(g, h), o} let us consider the following:

Definition 7.16. (Condition (C)) There exists an element Z € g satisfying:

(1) ad Z is a semisimple operator with eigenvalues 0, +1 only.

(2) b coincides with the centralizer of Z in g.
Theorem 7.17. ([130]) Let {(g,h),0} be a simple symmetric triple satisfying the condition (C)
in 7.16. Let G be the simply connected Lie group corresponding to g. Suppose that the centralizer
C(Z) in G is connected, or equivalently, that G/C(Z) is simply connected. Then the para-Kahler

metric of the para-Hermitian symmetric coset space G/C(Z) induced by the Killing form of g is
para-Hodge.

Corollary 7.18. ([130]) Suppose G is simple. Then the simply connected coset spaces G/C(Z)
with a para-Hodge structure induced by the Killing form of g are given up to infinitesimal equiva-
lence by the pairs {g,h} - in the symmetric triple {(g,h),c} — as follows:

(1) With by = 0 (2) With by # 0
(su*(2m + 2n),su*(2m) + su*(2n) + R)  (sl(m + n,C),sl(m,C) + sl(n,C) + C)
(so(n+1,1),s0(n) +R) forn >2 (s0(2n,C),sl(n,C) + C)
(sp(n,n),su*(2n) + R) (so(n+2,C),s0(n,C)+ C)
(B4, 50(1,9) + R) (sp(n,C),sl(n,C) +C)

(E§,50(10,C) + C)

(B, E5 +C)

In [130] more examples of para-Hodge manifolds are given, including for instance the real
para-Grassmannians.

7.5 Semisimple para-Hermitian symmetric spaces as quantizable
coadjoint orbits

Definition 7.19. A symplectic manifold (M, w) is said to be guantizable if the cohomology class
[w] in H?(M,R) of the non-degenerate closed 2-form w lies in the image i* H2(M, Z) of the homo-
morphism i*: H*(M,Z) — H?*(M,R) induced by the inclusion map i: Z — R.

The following theorem gives a useful criterion in order to know whether a symplectic manifold
is quantizable:

Theorem 7.20. ([140, 252]) A symplectic manifold (M,w) is quantizable if and only there is a
Hermitian line bundle L — M over M with an invariant connection V such that its curvature
form Ry satisfies (1/271)Ry = w.



Definition 7.21. Let G be any Lie group. Then G acts on the (real) dual space g* of its Lie
algebra g via the contragredient of the adjoint representation by

(7.1) (so f)(X)=f(Ad(sT)X), s€G, Xeg feg.
Each orbit in g* induced by this action is called a coadjoint orbit.

Proposition 7.22. ([134]) Each coadjoint orbit O in g* of the action of the Lie group G on g* is
endowed with a natural closed 2-form wy such that (O, wq) is a symplectic manifold.

Let {(g,h),c} be an effective semisimple symmetric triple and Z € g such that:

(7.2) (1) b={Xeg:[X,2 =0}
and
(7.3) (2) adZ:g— g has only real eigenvalues.

By Theorem 7.8, G/C(Z) is a para-Hermitian symmetric coset space. If B denotes the Killing
form of g, the associated natural isomorphism b: g — g* is given by X — fx, where fx(Y) =
B(Y, X) for Y € g. This isomorphism intertwines the adjoint action of G on G and the coadjoint
action of G on g* given in (7.1). Thus Oz = G/C(Z) is a coadjoint orbit. Then we have:

Theorem 7.23. ([129]) Let Oy = G/C(Z) be the para-Hermitian symmetric coadjoint orbit
associated with the effective semisimple triple {(g,h), o} which satisfies (7.2) and (7.3), and wz
the Kirillov structure on Oz (Proposition 7.22). Suppose G is simple and does not admit a complex
Lie algebra structure, and suppose C(Z) is connected. Then (Oz = G/C(Z),wz) is quantizable.
Moreover, G/C(Z) is a para-Hodge manifold.

Theorem 7.24. ([129]) Let (g,h) denote one of the following symmetric pairs: (su*(2m + 2n),
su*(2m) + su*(2n) + R),(the quaternionic case); (so(n+1,1),s0(n) + R) for n > 2, (the n-sphere
case); (sp(n,n), su*(2n) +R), (the Sp(n)-case); and (E,s0(1,9) + R), (the octonion case). Then
(g,h) is part of an effective simple triple (i.e., g is simple), which satisfies (7.2) and (7.3) for a
suitable Z € g such that the orbit Oy in Theorem 7.23 is simply connected. In particular C(Z) is
connected and all of the conclusions of Theorem 7.23 apply to (Oz,wz).

The condition “C(Z) connected” in the previous theorem can be weakened under certain
conditions and we can conclude [130] that, for instance, the real para-Grassmannians associated
to (sl(m + n,R), sl(m,R) + sl(n,R) + R) are quantizable coadjoint orbits.

The following result gives us more examples related to compact irreducible Hermitian sym-
metric spaces:

Theorem 7.25. ([129]) Let {g,h,c} be an effective simple triple which satisfies (7.2) and (7.3)
and such that g admits a complex Lie algebra structure which commutes witho. Let Oz = G/C(Z)
be the para-Hermitian symmetric coadjoint orbit associated with {(g,h),0} and wz the associated
Kirillov symplectic 2-form. Then (07 = G/C(Z),wz) is quantizable. Moreover, for each of the
following pairs {g,b} there is a o such that {(g.h),0} satisfies the preceding hypotheses:
(sl(m + n,C),sl(m,C) + sl(n,C) + C), (s0(2n,C),sl(n,C) + C), (so(n + 2,C),so(n,C) + C),
(sp(n,C),sl(n,C) + C), (E§,s0(10,C) + C) or (Ef, E§ + C).

The corresponding quantizable orbit Oz = G/C(Z) is simply connected and is diffeomorphic
to the cotangent bundle of a compact irreducible Hermitian symmetric space.
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7.6 Symmetric spaces of Hermitian type

As Hilgert, 'Olafsson and Orsted have proved, there is a narrow link between symmetric spaces
of Hermitian type, Kaneyuki-Kozai’s para-Hermitian symmetric spaces and Ol’shankii’s regular
symmetric spaces. Concerning this, we now recall some definitions and results.

Let (G, H, o) be a semisimple symmetric pair, g the Lie algebra of G and g® the complexification
of g. Suppose for the sake of simplicity that G is contained in the simply connected group G°
with Lie algebra g®. There always exists a Cartan involution 7 commuting with . H is an open
subgroup of the fixpoint subgroup G,. Let K = G, be the fixpoint group of 7 in G. Then we
have an orthogonal — with respect to the inner product (X,Y), := — Tr(ad(X) ad(rY)) — direct
sum decomposition

g=bham=tep-hehemem,,

where h=g, is the Lie algebra of H, =g, is the Lie algebra of K, mi=h*={X € g: o(X)=— X},
p =8 ={X €g:7(X) = —X} and the subscript k (resp. p) denotes the intersection with &
(resp. p®), where the superscript C denotes the complexification. Let D := G/K and M := G/H.
Then D is a Riemannian symmetric space and M is a pseudo-Riemannian symmetric space. Let
c¢(my) be the center of my, i.e., c(my) = {X € my: [X,Y] =0, VY € m;}. The pair (g, 0) is said
to be of Hermitian type if 3m(c(my)) = my, and there is no non-trivial, non-compact ideal of g
contained in §. We say that M and o are of Hermitian type if (g, ) is of Hermitian type.

The definition of a para-Hermitian symmetric pair is Definition 7.6.

The regular spaces are defined by interchanging the réle of the compact and non-compact part
of m. For g simple those spaces were first introduced by Ol'shanskii [170, 171].

The semisimple symmetric pair (g, o) is called regular if 3m(c(m,)) = m, where c¢(m,) is the
center of m,.

View g C g and let x be the conjugation of g© relative to g. Define

g =g =h@im and g = grepe = by by ©my S imy.

We write (g,0)¢ := g and (g,0)" := g". By holomorphic extension and restriction, o and 7 define
involutions on g¢ and g”. Those involutions are denoted by the same letters or with the superscript
¢ (respectively 7). Then ¢¢ = k[, 0°7¢ =: 7o is a Cartan involution of g°, ¢” is a Cartan mvolution
of g" and 70[] = k|y. The associated pair is defined by (g,0)? = (g,07), and we let 0* = o7.
Notice that ™ and ¢ are related by (g,0,7)" = (g,0% 7)¢, with the obvious notation. The pair
(g,0)¢ is called the c-dual of (g,c) and (g,0)" is the dual or Riemannian dual of (g, o).

Theorem 7.26. ([167]) Let (g,0) be an effective symmetric pair such that g has no compact
ideals. Then the following assertions are equivalent:

(1) (g,0) is of Hermitian type.

(2) (¢, 0) is regular.

(3) (g°,7) is effective and para-Hermitian.
(4) (g,70) is of Hermitian type.

(5) (g7, 70) is regular.

(6) (g",7) is effective and para-Hermitian.

Now, let L be a Lie group and (V, (, )) a finite dimensional real Euclidean vector space and an
L-module. A subset C C V is an open (convez) cone if C is open, (convex) and (R*—{0})C C C.
If C is an open cone we define the dual cone C* by C* := {u € V : {u,v) > 0,Yv € C — {0}}. C
is proper if both C' and C* are non-zero.
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Let C be an open and proper convex cone in a real vector space V. Then
D(C) =V +iC CVE©
is called a tube domain over C and also a Siegel domain of type L.
If G/K is of tube type, then a Cayley transform of G/K is a map C of G/K to a tube domain
D(C), defined by C = Ad (exp %m’X), where ad(X) is supposed to have eigenvalues 0,1, —1.

Theorem 7.27. ([167]) Let g be simple and o of Hermitian type. Then the following assertions
are equivalent:

1) G/K is a tube domain and there exists a Cayley transform C such that o is conjugate to C2.

2) m s reducible as h-module.

3) If ¢(h) is the center of b, then dimc(h) = 1 and c(h) C p.

4) o is inner and o = 0y.

6

All the spaces in Theorem 7.26 are isomorphic.

7) (g.0) is isomorphic to one of the pairs (g¢, o), (g% 7), (g",7), or (g", c?).

8

g,0) is regular.

(
(
(
(
(5
(
(
(
(

)
)
)
)
) o = Ad(exp X) is inner and h C 34(X).
)
)
)
9)
0)

(
(
(g,0) is para-Hermitian.
(

(1

g",7) is of Hermitian type.

The symmetric spaces which satisfy these 10 equivalent conditions are called by ’Olafsson
symmetric spaces of Cayley type, because of the intervention of the Cayley transform.

7.7 Para-Hermitian homogeneous spaces

These spaces have been introduced and studied in [123] (see also [124, 126]). Kaneyuki obtains
a classification in terms of a natural number v in such a way that para-Hermitian symmetric
spaces correspond to the case v = 1. This number is associated with the kind of GLA (graded
Lie algebra) involved. We now give some specific definitions and results on para-Hermitian ho-
mogeneous spaces, including their relation with three Lie algebra objects: para-Kahler algebras,
dipolarizations and graded Lie algebras.

Definition 7.28. Let G be a connected Lie group and H a closed subgroup of G. Suppose that
the coset space G/H has a para-Kahler structure (g, J). If G leaves both g and J invariant, then
G/H is called a para-Kdhler coset space.

Definition 7.29. Let g be a real Lie algebra, h a subalgebra of g, J a linear endomorphism of g
and p an alternating 2-form on g. Then the cuadruple {g, b, J, p} is called a para-Kéihler algebra,
if the following conditions are satisfied:

(1) J(h) Chand J*=1 (mod h). The +-eigenspaces of the operator on the space g/h induced
by J are equi-dimensional.
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2) [X,JY]=J[X,Y] (modb), X€bh Yeaq

3) [JX,JY] = J[JX, Y]+ JIX,JY] - [X,Y] (mod ), X,Y €gq.

(2)
(3)
(4) p(X.g) =0« X €b.
(5) p(JX,JY)=—p(XY), X,Ye€aq.
(6)

6) p(IX.Y], Z) + p(IY. Z]. X) + p([2,X],Y) =0, X,Y.Z€g.

If the 2-form p is a coboundary df of a linear form in the sense of the Lie algebra cohomology,
then the para-Kahler algebra {g, b, J, p} is called a nondegenerate para-Kdhler algebra. In this
case (4)-(6) above can be replaced by:

(1) f([(X.g)=0& X eh.
®) (X JY]) ==f([X.Y]), X Yeq

Theorem 7.30. Let G be a connected Lie group and H a closed subgroup of G, whose Lie algebras
are g and by, respectively. Under these hypotheses:

(1) Suppose that G/H is a para-Kahler coset space. Then there exist a linear endomorphism J
of g and an alternating 2-form p on g such that {g, b, J, p} is a para-Kdhler algebra.

(2) Suppose that the pair {g,h} has the structure of a para-Kdihler algebra given by {g,h,J, p}.
Suppose furthermore that:

(a) [Ada,J]=1 (mod b), a € H.
(b) p((Ada)X, (Ada)Y) =p(X,)Y), a€ H, X,Y €g.

Then G/H is a para-Kdhler coset space. This assertion holds if H is connected, without
assumming (a) and (b).

Definition 7.31. Let g be a real Lie algebra, g* two subalgebras of g and p an alternating 2-form
on g. The triple {g*, g7, p} is called a weak dipolarization in g, if the following conditions are
satisfied:

(1) g=g"+g".

(2) Put h:=g*Ng™. Then p(X,g) =0 X €.

(3) plg™.87) =plg~.07) =0.

4) p(IX, Y], Z) + (Y, 2], X) + p([Z, X],Y) =0, XY, Z € g.

It follows from (1)-(3) that g* and g~ are equi-dimensional.
Let g be a real Lie algebra, g= two subalgebras of g and f a linear form on g. The triple
{g7,97, f} is called a dipolarization in g, if the following conditions are satisfied:

(Heg=g"+g"
(2) Put h:=g"Ng~. Then f([X,g]) =0 X €.

(3) f(lg™.g7]) = f(lg~.97]) =0.
A weak dipolarization can be obtained from a dipolarization {g*, g, f} just by taking df as p.
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Theorem 7.32. ([124]) Let g be a real Lie algebra. Then there exists a bijection between the set
of isomorphism classes of para-Kdhler algebra structures on g and the set of isomorphism classes
of weak dipolarizations in g.

Theorem 7.33. ([124]) Let G be a connected Lie group and H a closed subgroup of G, with
respective Lie algebras g and Y. Suppose that G/H is a para-Kdhler coset space. Then g admits a
dipolarization {g*, g™, p} such that

(1) p=g"Ng~.
Conversely, suppose that there exists a weak dipolarization {g*, g™, p} in g satisfying the condi-
tions (1) and

(2) (Adg H)g* C g% ;

(3) pis (Adg H)—invariant.
Then G/H is a para-Kdhler coset space.

The above manifold G/H is called the para-Kdhler coset space corresponding to the weak
dipolarization {g*,g™, p}.

Definition 7.34. Let g be a Lie algebra and Z° € g. Then (g, Z°) is called a graded Lie algebra of
the v-th kind if g = Z gk, where g = {X € g:ad(Z%X = kX}. Z°is called the characteristic

k=—v

element of the GLA g.

Let g be a real semisimple Lie algebra and B the Killing form of g. Note that in this case a
weak dipolarization in g is always a polarization, since the second cohomology group of g vanishes.

Proposition 7.35. ([124]) Let {g™, g™, f/} be a dipolarization in g. Then b := g™ N g~ coincides
with the centralizer ¢(Z) in g of an element Z € g.

Theorem 7.36. Let g = Z gr be a semisimple graded Lie algebra of the v-th kind, and Z € g its

k=—v

characteristic element. Let g* = Zgik‘ Define a linear form f ong by f(X) = B(Z,X), X € g.
k=0
Then {g*,g7, f} is a dipolarization in g.

This dipolarization {g*, g™, f} is called the canonical dipolarization in the GLA g.

Theorem 7.37. Let g = Z gr be a semisimple graded Lie algebra of the v-th kind, and Z € g
k=—v

its characteristic element. Let G be a connected Lie group generated by g and C(Z) the centralizer

of Z in G. Then M := G/C(Z) is a para-Kdhler coset space.

This para-Kéahler coset space G/C(Z) is called a semisimple para-Kdhler coset space of the
v-th kind. If G is simple, then it is called a simple para-Kdhler coset space.

Remark 7.38. Deng and Kaneyuki give in [58] an example of nonsymmetric dipolarizations on the
Lie algebra of upper triangular matrices, and pose the following problem: Are there nonsymmetric
dipolarizations on semisimple Lie algebras? If so, classify them.
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Theorem 7.39. [112] A homogeneous space G/H, where G is a connected semisimple Lie group
and H is a closed subgroup of G, admits a G-invariant para-Kdhler structure if and only if H is
the identity component of a centralizer of a noncompact abelian subgroup of G.

A characterization of these invariant structures in terms of root systems related to G and H is
given in [112]. Somewhat specifically, A(G) and A(H) being the roots systems of G and H, the
author characterizes those structures by partitions of the complementary roots A(G) — A(H).

Remark 7.40. Some properties of semisimple para-Kahler coset spaces.

(1) The space G/C(Z) is the coadjoint orbit of G through f, and so it is a Hamiltonian G-space
in the sense of Kostant [140].

(2) A semisimple para-Kéhler coset space of the v-th kind is a para-Hermitian symmetric space
if and only if v = 1.

The semisimple para-Kahler coset spaces enjoy some properties similar to those of semisimple
symmetric para-Hermitian spaces:

(3) A semisimple para-Kahler coset space M = G/C(Z) is diffeomorphic to the cotangent bundle
of a certain R-space. If G is complex semisimple, then G/C(Z) is holomorphically equivalent
to the cotangent bundle of a certain Kéhler space.

(4) A semisimple para-Kahler coset space M = G/C(Z) is equivariantly imbedded in a certain
space M as the G-orbit through a certain point under the diagonal G-action. The image of
M is open and dense in M. In particular, M is viewed as a G-equivariant compactification
of M. If G is complex semisimple, then the above imbedding is holomorphic.

We recall here that the infinitesimal classification of semisimple para-Kéahler coset spaces of
the second kind has been given in [123, 125].

8 Para-Kahler space forms

8.1 Para-Kéahler manifolds of constant paraholomorphic sectional
curvature

Consider the tensor field R’ on the para-Kahler manifold (3, g, J) defined by

R(X,Y,Z,W) = i{g(x. 2)g(Y, W) = g(X,W)g(Y, Z) — g(X, JZ)g(Y. W)
+g(X, TW)g(Y, JZ) - 29(X, JY)g(Z, JW)}, X,Y, Z,W € X(M).

This tensor field was independently defined in [188] and [87]. We recall from Section 4.3 that H(X)
denotes the paraholomorphic sectional curvature defined by a vector X. We have the following:

Theorem 8.1. ([87]) Let (M, g,J) be a para-Kdhler manifold such that for each x € M, there
ezists ¢, € R satisfying H(X) = ¢, for every X € T,M such that (X, X)g(JX,JX) # 0. Then
the Riemann-Christoffel tensor R satisfies R = cR/, where c is the function defined by © — c,.
And conversely.
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Definition 8.2. A para-Kéhler manifold (M,g,J) is said to be of constant paraholomorphic
sectional curvature c if it satisfies the conditions of the previous theorem.

One has the following Schur-type result:

Theorem 8.3. ([87]) Let (M,g,J) be a para-Kdahler manifold with constant paraholomorphic
sectional curvature c. If dim M > 2, then c is a constant function.

Consequently, if dim M = 2, in order to guarantee that a para-Kahler manifold has constant
paraholomorphic sectional curvature ¢, one must assume that c is a constant function.
On the other hand, we have the following result concerning the ordinary sectional curvature:

Theorem 8.4. ([87]) Let (M,g,J) be a para-Kdihler manifold with constant paraholomorphic
sectional curvature c. Then the (ordinary) sectional curvature of the planes of TM 1is:

(1) equal to c, if dim M = 2.

(2) unbounded if dim M > 2, ¢ # 0.

As is well known, E. Cartan [41] defined for a Riemannian manifold the axiom of the plane
and the axiom of free mobility, and proved the equivalence of the constant curvature’s property
with each axiom, and also with the existence of a geodesic representation in the ordinary space.
The almost complex and Kéhler analogs are also well known ([116, 244, 261]). For a para-Kihler
manifold, the concepts of paraholomorphic free mobility and the axiom of paraholomorphic planes

— for several axiom of planes related to different types of sections see [104] — are given in [198]. In
that paper, the following result is given:

Theorem 8.5. Let (M,g,J) be a para-Kdhler manifold with dim M > 2. Then the following
properties are equivalent:

(1) M is a space of constant paraholomorphic sectional curvature c.

(2) The Riemann-Christoffel curvature tensor R has the expression

R(X,Y.Z,W) = H{g(X, 2)g(Y, W) = g(¥; Z)g(X, W) + (X, J2)g(JY, V)
-9V, JZ)g(JX, W) +29(X,JY)g(JZ, W)}, XY, Z, W € X(M).
(3) M admits paraholomorphic free mobility.
(4) M is paraholomorphically projectively flat.
(5) M satisfies the aziom of paraholomorphic planes.

Theorem 8.6. ([188, 189])

(1) A para-Kdhler manifold M with dim M > 4 admits a paraholomorphically projective trans-
formation onto a para-Kdhler space of constant paraholomorphic sectional curvature if and
only if M is a space of constant paraholomorphic sectional curvature.

(2) There is a paraholomorphically projective transformation of a para-Kéihler space M onto a
locally symmetric space if and only if M is of constant paraholomorphic sectional curvature.

Some results on manifolds with constant nonvanishing paraholomorphic sectional curvature
are given in [25] and [104]. We quote from the last reference the following result:
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Theorem 8.7. Let M be a para-Kdhler manifold. If the paraholomorphic sectional curvatures in
every point are bounded, i.e., for an arbitrary nondegenerate paraholomorphic section a in T,(M),
we have |K(a,p)| < c(p), then M is of constant paraholomorphic sectional curvature.

The general expression of the metric and the almost product structure of para-Kahler space
forms in normal coordinates is given in [87]. From that expression, the following result is obtained
in [88]:

Theorem 8.8. Any C> para-Kdhler manifold M*" of constant paraholomorphic sectional curva-
ture ¢ is harmonic, with characteristic function

1+\/CQ/2{(2n—1)c0t cQ/Q—tan\/cQ/Q}, Q>0
AQ = 1+\/—69/2{(271—l)coth\/*cQ/2~tanh«/—cQ/Q}, Q<0

n, c=0.

As usual,  denotes here the distance function (see [230]) and A the Laplacian.
On the other hand, a formula for the Laplacian of para-Kéhler space forms is given in [232].
We quote here the following result:

Theorem 8.9. ([193]) A para-Kahler manifold is H-concircularly flat if it is of constant para-
holomorphic sectional curvature.

Some conditions for a para-Kihler space manifold — the elliptic and parabolic cases are also
considered — to be a para-Kahler space form, in terms of H P-transformations (see Subsection 6.2)
can be found in [60].

8.2 The paracomplex projective models P,(B)

As we have said in Section 2.5, Rozenfeld-Libermann’s paracomplex projective spaces P,(A) were
introduced in [144] and [223], [224, p.578]. They are endowed in [144] with an almost para-
Hermitian structure (g, J), with the wish to make them the models of paraholomorphic sectional
curvature, by paralleling the construction in the complex case.

We recall that in the complex case one can— see, for instance, [42] — normalize the complex
homogeneous coordinate vectors Z, putting Zo = Z/(Z, Z)}/? and thus give to the Fubini-Study
metric on the complex projective space P,(C) the expression g = (dZy, dZo) — (dZy, Zo){ Zo, dZy).
In [144, p. 89], the author uses a similar procedure and obtains a pseudo-Riemannian metric of
“Fubini-Study” type g = (deq, dely) — (eo, dej) (e, deg). This expression is valid only locally, in the
open subset of the space P,(A) ~ P,(R) x P,(R) complementary of a singular hyperquadric.

The paracomplex projective models P,(B) were introduced in [87]. They are diffeomorphic
neither to our paracomplex projective space nor to Libermann’s paracomplex projective space (see
Section 2.5), but they are, for n > 1, models of para-Kahler manifolds of nonvanishing constant
paraholomorphic curvature, as is proved in [87]. Notice that, since the metric has signature (n,n),
in order to change the sign of the sectional curvature it suffices changing the sign of the metric.
Moreover, as they are a projective spaces of a certain kind, we shall call them the paracompler
projective models.

We recall here its definition and first properties. Let B be the vector space R? with the product
(a,b)(a’, V) = (ad’,bV), with which B is a commutative R-algebra via the inclusion a — (a,a),
a € R. If we define the conjugate @ of an element w = (a,b) € B by @w = (b, a), then an element
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w is real if @ = w and it is invertible if wi # 0. We put B, = {(a,b) € B:a > 0,b > 0}. Then
B, is a Lie group. Let By ™ = {z = (2%) € B"*! : (z,2) > 0}, where (z,2) = Zzaia.

a=0

We denote by gl(n + 1,B) the algebra of (n + 1) X (n + 1)-matrices with elements in B. Then
gl(n+1,B) = gl(n + 1,R) x gl(n + 1,R). We have the Lie group

Un+1,B)={Zcglin+1,B): (Z2,2%) = (z,2), z€B"}.

Let P,(B) be the quotient space of Bi™ under the equivalence relation given by (z%)~(gz%),
q € B,. Then if 7: By — P,(B) is the natural projection, we can identify 7(z) with the unique
element w = ¢z such that (w, @) = 1, (w, w) = (@, @), where ¢ = (a,b) € B,. Thus,

P,(B) ~ {(u,v) € R™ x R : (u,0) =1, (u,u) = (v,0v)}.

Since Z(gz) = qZ(2) for all Z € U(n +1,B), 2z € By™, g € B., the action of U(n + 1,B) passes
to the quotient P, (B).

Some geometric properties of the paracomplex projective model and its reduced space P,(B)/Z
are studied in [88]. A geometric realization of the space P;(B)/Z, is also considered there (see
also [120]).

In [89, 90], it is shown that the spaces P,(B) must be considered as one of the most natural
homogeneous pseudo-Riemannian spaces. In fact, it is shown that in order to obtain the geometry
of these spaces, it suffices only to give a real finite dimensional vector space and its dual space,
which will be now explained.

Let E be a real (n+ 1)-dimensional vector space, and E* its dual space. On the space E @ E*
there exist:

(1) A natural non-degenerate bilinear form (, ) given by
(z+a,y+ 8) = (2/c)(aly) + B(x)), z,y€E, a,B€E*", 0#ceR.
(2) A (1,1) tensor Jy such that Jy|g = idg, Jo|p» = —idpg-.

The subgroup of GL(E @& E*) which preserves (, ) and Jy can be identified with GL(E). We
introduce in

(E®E"),={z+a€EQLE : (z+a,c+a)=(4/c)a(z) > 0}
the following equivalence relation ~: = + a ~ az + ba, a > 0, b > 0, and define
P(EQFE)=(E®E")./~ .

The identity component GLo(E) of GL(E) acts transitively on the pseudosphere S = {z + o €
E®FE* : a(z) = 1} and also on P(E® E*), making it a homogeneous manifold (P(E@GE*), GLy(E))
and the base space of a fibre bundle p: S — P(E & E*) with fibre R and such that the subgroup
{al € GLy(E) : a > 0} of GLy(F) acts transitively on the fibres. From this bundle we can endow
P(E & E*) with a pseudo-Riemannian metric (, ) and an almost product structure J induced very
simply via S from the structures in F & E*, which, as it is proved, make (P(E @ E*), GLo(E))
a para-Kahler space form isomorphic to the paracomplex projective model P,(B). Moreover, the
construction of (P(E & E*), (, ), J) is natural with respect to the category of finite dimensional
real vector spaces. In this sense, because of the economy of the initial data, the geometry of
these spaces have a right to stand immediately after affine and projective geometry and prior to,
say, the geometry of the sphere. That space is thus one of the more natural pseudo-Riemannian
homogeneous spaces.
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8.3 Classification of para-Ké&hler space forms

The classification of para-Kahler space forms relies on the two following results:

Theorem 8.10. ([87]) Any two complete, connected and simply connected para-Kdhler manifolds
of constant and equal paraholomorphic sectional curvature ¢ are paraholomorphically isometric
(we assume that c is a constant function).

Theorem 8.11. ([87, 88, 94])

(1) The space (P,(B), g, J), where g is the metric

TilYj
= ———(dz; @ dy; + dy; ® dz; — ———=——(dy; ® dz; + dx; ® dy;)),
I T gy 0 (g )
0+# ceR, and J the almost product structure
0 d
= = T — — ® dy;
J 8xi®dT 8%@ Y

(both in the coordinates x;,y; given in [87]), is, for n > 1, the model of the 2n-dimensional
para-Kahler space forms of paraholomorphic sectional curvature ¢ # 0.

(2) The space (R?%, g, J), where g is the metric

4
(8.1) g= E(('OShQdeI@d:r—dy@dy), 0#ceR,

and J the almost product structure

1 2 0
8.2 J=————®dy— cosh2y— ® dz,
(8.2) COSllear@ Y oSt y8y® °
both in the coordinates (z,y) of R?, is the model of the para-Kdhler space forms of dimension
2 and paraholomorphic sectional curvature ¢ # 0.

(3) The space (R?™, g,J), n > 1, where g is the metric and J the almost product structure given
by
0 7]
dzi ayl
(74,95 being the coordinates of R®™, is the model of the para-Kéhler space forms of dimension
2n > 2 and paraholomorphic sectional curvature ¢ = 0.

The para-Kahler space forms are classified in [94, 93] for the cases included in the following
results (see those papers for the details):

Theorem 8.12. Let M?2" be a connected complete homogeneous para-Kdhler manifold of constant
paraholomorphic sectional curvature ¢ and dimension 2n. Then, M2™ is paraholomorphically iso-
metric to a manifold of one of the following types:

(1) P,(B)/T, element of TS for everyn > 1, or TZ for oddn>1, or TD, TT, TO or TT for
n+1=0 (mod4) (ifc#0, n>1)
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(2) a Lorentzian covering of (Py(B)/Zs, g,J), where g is the metric (8.1) for z € [0,7] and J
the almost product structure (8.2) (if ¢ #0, n = 1);

(3) R2"/T, where R2" is endowed with the structure (g,J) in (3) in Theorem 8.11, and T is a
group of pure translations (if c=0, n > 1).

Theorem 8.13. Let M?" be a complete connected para-Kdhler manifold of constant paraholomor-
phic sectional curvature ¢ # 0 and dimension 2n > 2. Then it is paraholomorphically isometric
to a manifold diffeomorphic to the tangent bundle of a spherical space form S™/T; that is, to a
manifold of the type T(S™/T), where T = (019...®0,)/G, G being a finite group and oy, ..., 0,
fized point free irreducible orthogonal representations such that Z dego; =n+1.

K2

The spaces in (1) in Theorem 8.12 are diffeomorphic to the tangent bundles of homogeneous
spherical space forms (see [254]). This is the reason for the notation T'S, etc.; that is, one writes S
for spherical, Z for cyclic, D for dihedral, T for tetrahedral, O for octahedral and I for icosahedral.
As one can see, this phenomenon appears again in the non-homogeneous case. On the other hand,
notice the difference with the Kéhler case, where one has only the complex projective space P,(C),
whose space forms are not Hermitian [254].

Theorem 8.14. ([95]) Let (M>",g,J) be a connected, complete para-Kéihler manifold. Then:
(1) dim Aut(M, g, J) < n(n+2);

(2) dim Aut(M, g, J) = n(n+2) if and only if M is paraholomorphically isometric to one of the
following homogeneous para-Kahler space forms:
(a) Py(B) or Py(B)/Zy, n>1, c#0.
(b) R%, c¢#0.
(c) R2", c=0.
Remark 8.15. Submanifolds of P,,(B). The geodesics of P,(B) are studied in [88]. The totally

geodesic submanifolds in [89, 90]. The classification of the nondegenerate totally umbilical pseudo-
Riemannian submanifolds can be found in [91].

9 Some open problems
(3.1) (1) To give the homotopy classification of paracomplex structures on (perhaps a restricted
type of) even-dimensional manifolds (see [92]).
(2) Does there exist a paracomplex structure on the pseudosphere S$?7 (see [56, 113, 144]).
(3) To find “obstacles” — in terms of characteristic classes, for instance — for a manifold to have

a paracomplex structure (see [70, 100], [144, p. 27], [155]).

(4.1) (1) To study and — mainly — characterize the almost para-Hermitian manifolds whose Rie-
mann-Christoffel curvature tensor R satisfies the condition which one has in the Kahler case:

R(X,Y,JZ, W)+ R(X,Y, Z,JW) = 0. (See Proposition 5.3.)

(2) Classify the non-para-Kahler almost para-Hermitian manifolds of constant paraholomorphic
sectional curvature.
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(4.3) (1) To give examples of each one of the 136 classes of almost para-Hermitian manifolds (see
[93]). One of the possible ways of to obtain results is to consider the general structures on the
tangent and cotangent bundle in [48, 3.5] and [49, 50, 51]- where examples of the primitive classes
are given — and the large series of properties given in the papers by Rosca and others.

(2) To characterize each of the 136 classes, and relate these characterizations to several authors’
results (for instance, [247], see Subsection 4.3).

(3) To prove that the inclusion relations among the 136 classes are strict.

(4.9) To characterize the non-reductive homogeneous para-Hermitian manifolds (see [101]).

(5.1) (1) Is there a gap in the possible dimensions of the automorphism group of an almost
para-Hermitian manifold? ([95]).

(2) Under what conditions is an (almost) para-Hermitian or para-Kahler manifold a tangent
or cotangent manifold?

(3) How large is — in the appearing signatures — the family of pseudo-Riemannian flat space
forms given via Cruceanu’s construction from para-Kéhler manifolds?

(5.4) A specific problem: How to construct a Frenet field of frames along a null curve of a
para-Kahler manifold?

(5.6) To give an example of a Bochner flat para-Kahler space form with constant scalar curvature
and nonvanishing Pontrjagin classes (see [23]).

(7.2) To study and classify the para-Hermitian symmetric spaces with non-semisimple group.

(7.3) (1) To give the explicit expression of the para-Kahler structure of all the para-Hermitian
symmetric spaces with simple group (see [127, 96]). The first cases to be studied could be the
quaternionic para-Grassmannians; that is, the para-Hermitian symmetric spaces corresponding to
the symmetric pair (su*(2m + 2n), su*(2m) + su*(2n) + R), which are spaces diffeomorphic to the
cotangent bundles of the quaternionic Grassmannians Gy, »(H). )

(2) To study the para-Hermitian symmetric spaces with simple group — different to the well-
known case T*(O(n)) ~ as (up to diffeomorphism) phase spaces of dynamical systems.

(8.2) To study the reflector bundles of the paracomplex projective models P,(B) and of their
reduced spaces P, (B)/Zo..
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