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Introduction.

In the study of vector bundles one considers prolongations of certain geometrical objects on the
base manifold or on the bundle, to the total space. Among these prolongations there are the
vertical and horizontal lifts for tensor fields and linear connections. The definitions of these lifts,
given up to now, have some deficiences as follows.

a) For certain objects the vertical or horizontal lift is not a vertical or an horizontal object [4].

b) The definition given for certain lifts on a general vector bundle [1], [4]-[6] does not reduce
to the definition before known [7], [8], in the particular case of a tangent bundle.

¢) The definition for the horizontal lift is given only for certain particular types of tensor fields

[1], [4]-[6].

The aim of this work is to modify, to complete and to extend the definitions of certain lifts on
a vector bundle according with a more natural, more consequent and more simple point of view
and to give geometrical characterisations for these lifts.

1. d—Tensor fields and d-lifts.

Let ¢ = (E,m, M) be a vector bundle with total space E, projection 7 and base manifold
M, connected and paracompact. Let be, in adapted charts on M, ¢ and E, the local coordi-
nates (z'), (y*), (2%, y?) respectively and the pairs of corresponding dual bases (8;,d"), (eq,€%),
(03, 8a,d',d%), where 0; = 0/0z%, 8, = 0/0y,, d' = da',d®* = dy* and i,j,k = 1,2,...,m,
a,bc = 1,2,...,n. Setting for each 2 = (z,y) € E, V.E = kerT.w, we obtain the wvertical
distribution and so the vertical subbundle of TE, denoted by V E. This is the distribution tangent
to the wertical foliation on E. Considering the quotient bundle WE = TE/V E, we obtain the
following short exact sequence over E,

(1) 0—VE-“TE-LWE—0,

where i and p are the canonical injection and projection, respectively. For VE we have the
local basis (0,) and for WE, the basis (J; = p(&)). Then putting for each z € FE,
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VAE = {a € T'E|a(A.) = 0,VA, € V,E}, we obtain a subbundle V*E of T*E, called the
orthogonal dual of VE. Setting then WLE = T*E/V+E, we get the short exact sequence over E,

(2) 0—VE L TE-LWE —0,

with j and ¢ the canonical injection and projection. For V+E we have the local basis (d’) and for
WLE, the basis (d* = ¢(d®)).

As base manifold for the vector bundle £, M has a supplementary structure and we can consider
the following class of tensor fields.

Definition 1.1. A distinguished, or shortly d-tensor field of type (p, q,r,s) on the base manifold
M of the vector bundle &, is a section ¢ of the vector bundle @*TM ®" £ @1 T*M ®* £* over M.

The local expresion for such a tensor field is

(3) = ()0, @y @ @B ®

Also, E being the total space of the vector bundle &, we can consider the following class of
tensor fields.

Definition 1.2. A d-tensor field of type (p,q,7,s), on the total space E of the vector bundle £,
is a section T of the vector bundle * WE ®@" VE @1 V+E ®@° WLE over E.

b1

(4) T =T "0 ()0, @0y @ d Q- d @ od".

F1-jgb1--bs

These tensor fields were considered in [5] from another point of view.
The coordinates of the tensor fields ¢t and T, have the same law of transformation under the
change of the adapted charts and so we can give

Definition 1.3. The d-lift for a d-tensor field t of type (p,q,7,s) on M, given by 3), is the
d-tensor field T=t? of the same type on E, given by 4) where

) T s (@) = 6,005 (@),

Let F(M) be the ring of C*-real functions on M and f¢ = f o, for each f € F(M).
Putting F(M)? = {f|f € F(M)}, we can see that F(M)? is a subring of F(E), isomorphe with
F(M). Let TP(M) and T (M) be the F(M)-module of tensor fields of type (p, ¢) and the bigraded
F(M)-tensor algebra of M. Let then, 77(§) and 7 (£) be the F(M)- module of tensor field of
type (r,s) and the bigraded F (M )-tensor algebra of . We denote by 777 (M,¢), T (M,§) and
TF (& E), T(§, E) the module of d- tensor fields and the corresponding fourgraded algebras on
M and E, respectively.

Remark. The d-lift is a F (A )-monomorphism of fourgraded algebras.
Setting for each 1-form u € 7;(€), given by u(z) = pq(z)e?,
(6) Y(1)(2) = palx)y’,

where z = (z,y) € E, we obtain a class of functions on E with the following important property.
For two vector fields A and B on E, we have A = B if and only if A(yu) = B(yu), Yu € T1(§).
The operator v can be extended to tensor fields T' € 777 (§) by

(7) YT (2)eq, @ -+ B €q, ® ")(2) = YTy (2)0e, @ -+ @ B
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In particular, for T = I, the identical automorphism of £, we get the canonical vector field
K = ~(I¢) on E, given by

(8) Kyp) =y,  Yue Ti(8),
with the local expresion K = 3%0,.
Definition 1.4. A wvertical vector field on FE, is a section of the vertical subbundle VE.

Hence, a vertical vector field is a d-tensor field of type (0,0,1,0). It has the local expresion
A(z) = A%(z,y)0,.

Definition 1.5. The vertical lift, for a section u of the vector bundle ¢, is the vertical vector field
v’ on the total space E, given by

9) ] u(yp) = w(w)’, Ve € Ti(é),

where for f € F(M), f'= fomr= fd

Locally, if u = u%e,, then u¥ = u*(x)d,. For u = e,, we get
(10) (eq)" = 0, a=12,...,n

For the vertical lift we note the properties

(11) [u?,v"] =0, Lru’ = —u?,

where L is the Lie derivation with respect to the canonical vector field.

2. Normalisation of the vertical foliation.

The total space E of the vector bundle ¢ being a manifold endowed with the vertical foliation,
for its study it is convenient to consider a normalisation (equipation) of this foliation, that is, a
distribution on E, supplementary to the vertical one. Such a distribution will be called horizontal
distribution and denoted by HE. With H E we denote too the corresponding subbundle of TE and
we shall call it the horizontal subbundle. M being paracompact, we can consider a normalisation
N defined by a linear connection D in the vector bundle £ [6]. Setting in local charts

(12) Doer =Tig(z)es,  N{(2) =T(z)y’, 6 =0 — N0y,

(3

we can see that (6;), 1=1,2,..., m, are m linear independent local vector fields and they generate

locally the horizontal subbundle H E, associated to the linear connection D.

Definition 2.1. A horizontal vector field on the total space E of &, with respect to the linear
connection D (or the normalisation N), is a section of the horizontal subbundle HE.
Locally, for such a section we have A(z) = A¥(z,y)d;.

Definition 2.2. The horizontal lift for a vector field X on the base manifold M of £, with respect
to the connection D on &, is the vector field X" on the total space E, given by

(13) X"(yp) =v(Dxp), Ve Ti(§).
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Locally, if X = X'0;, then X" = X§;. For X = 9;, we obtain
(14) (0" =6 i=1,2,...,m.
For the horizontal lift, the following properties hold

(FX)" = f7X", [X0Y"] = [X.Y]" = yREy.

15
( ) [,Xh, u“] = (DXu)U, ,CKAXh = 0,

where f € F(M), X,Y € TY(M), u € T*(€) and RP is the curvature of D.

Definition 2.3. A vertical 1-form on E is a 1- form which vanishes on each horizontal vector
field.

So, a vertical 1-form on E is a section on the subbundle H+E C T*E, the orthogonal dual of
HE. Locally, for such a 1-form one has a(z) = a,(z,y)(d* + N¢d').

Definition 2.4. The vertical lift for a 1-form p € 7(§) is the 1-form p? € 7;(FE) given by the
relations

(16) p(XM) =0, pu) = pw)?, VX eTHM), ue T ).
If o= po(z)e?, then p¥(2) = pq(x)(d® + N&(z,y)d"). For pn = €%, we get

(17) () =0"=d* + N*'d', a=1,2,...,n.

The 1-forms (6%), a = 1,2, ...n, generate locally the subbundle H-E.

Remark. The vertical 1-form on E and the vertical lift for a 1-form on £ depend of the normal-
isation V.
For the vertical lift of a 1-form p € 7;(€), one has
(18) Lgp® = p®, dp® (X" Y") = (o RRy),
dut (X*,u?) = (Dxpo) (w)?, dp(u?,v¥) = 0.

It follows from here

Proposition 2.1. The vertical lift u* of u € T1(§) is closed if and only if p is covariant constant.
In this case u* is exact and one has p¥ = d(yu).

Definition 2.5. A horizontal 1-form, on the total space E of £, is a 1-form which vanishes on
each vertical vector field.

Hence, a horizontal 1-form is a section on the subbundle V-E C T*E. Such a 1-form has the
local expresion a(z) = a;(x, y)dt.

Definition 2.6. The horizontal lift of a 1-form w € T*(M), is the 1-form w" € 7;(E), given by
the relation

(19) Wl =T*n(w).
It follows
Proposition 2.2. The horizontal lift of a 1-form w on M is the 1-form w" on E given by

(20) XM = w(X), WMut) =0, VX € THM), ueT ).
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If w=w;(z)d", then w"(z) = w;(z)d". For w = d’, we obtain
(21) @ =d,i=12...m

Remark. The horizontal 1-form on E and the horizontal lift for a 1-form on M are independent
of the normalisation N.

From the previous considerations it results that the following systems of local sections (d;, 9,),
(d?,6%) represent the dual bases adapted to normalisation NN, defined by the linear connection
D on ¢ and the adapted charts on E. We shall use these bases in the sequel to simplify the
calculations.

3. N-Decomposable tensor fiedls and v-lifts.

A normalisation N for the vertical foliation determines a direct sum decomposition of the bundles
TE and T*E,

(22) TE=HE&VE, T*E=V‘E¢ H*E.

We denote by H and V' the horizontal and the vertical projectors and by F' =V — H the almost
product structure associated to this decomposition.
For each A € TY(E) and a € T;(E) we obtain

(23) A=HA+VAa=Ha+Va=aoH+aoV.

Definition 3.1. A N-decomposable tensor field of type (p, q,r, s) on the total space E of the vector
bundle &, with respect to the linear connection D, is a section of the vector bundle ®* H EQ"™V E®4
ViE®* HYE.
We denote by 777 (E, N) and T(E, N) the F(E)- module of N-decomposable tensor fields of
type (p,q,r,s) and the corresponding fourgraded tensor algebra. )
Considering a tensor field T € 777 (E)as a F(E)-multilinear application T: (T;E)P*" x
(T'E)T* — F(E), it follows

Proposition 3.1. 4 tensor field T € ’qu:sr(E) is N—-decomposable of type (p,q,r,s) if and only if

(24) T=To(H?x V" x H x V*).

Such a tensor field has the local expression in adapted basis

(25) T(2) =T, (2,0)0, ® ... 0, ® ... d" ®...6" @ ... @ 6"
Hence, a N-decomposable tensor field is a d-tensor field in the sense used in [6]. Evidently, it
depends of the normalisation N, defined by the linear connection D on £.
From 23) and 24) it results that each tensor field T € T/(E) can be decomposed in 2/*/
N-decomposable tensor fields of type (p, q,r, s) with p+r =1 and ¢+ s = j. Therefore, we have
T(E)= & TX(EN).

ptr=i
q+s=j
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Using this decomposition, the bigraded algebra 7 (E), can be replaced by the fourgraded
algebra T(E, N).

Definition 3.2. The N-lift for a d-tensor field T of type (p,q,r,s) on E, given by (4), is the
N-decmposable tensor field T of the same type, given by (25), where

Fi1..4pQ1...Qr 1...0pQ1...Qr

(26) le...jqbl.”b‘\ (z,y) = le...jqbl...u (z.9).

Tt follows that the A/-lift is an isomorphism between the fourgraded algebras 7 (¢, E) and
T(E,N).

Definition 3.3. The v-lift, for a d-tensor field t of type (p.¢q,7,s) on M, is the N-decomposable
tensor field # on F, given by

(27) (Wt .,wﬁ,uf, 7LD (R .,X;‘,uﬁ', coLuy) =

v

:t(wl,...,wp,ul,...,u,,Xl,.._,Xq,ul,...,us) .
where w; € T{(M), itq € T1(€), X; € TH(M), up € T'(§).

Locally, if ¢ is given by 3), for ¢ we obtain

(28) () = B ()6, © Dy @ ® LR @6

1o Ggbi-w-bs
Remark. The lifts d, N and v satisfy the relation
(29) v=Nod
It is not difficult to check the following characteristic property for the v-lift.

Proposition 3.2. A N-decomposable tensor field T, of type (p,q,r,s) on E, is the v-lift of a
d-tensor field of the same type on M if and only if

(30) LT = (s—1)T.

In the following table, we consider certain important classes of N-decomposable tensor fields
of type (p, g, 7, s) on the total space E.

“harac- .
Name C larac Local expresion
terization
Vertical p=q=0 |T=T"3"0,®...0,, & M. @

Horizontal [r=s=0 |T = T”";;’(’l’zﬁ] ®...0664,® e ... @ d

Vertical- p=5=0 |T=TE8,®.. 00« P R...Qd

horizontal 7
Horizontal- i1...ip “by cbe
vertical r=q=0 |T= Tblmb,‘;im @...8 ‘51}1 ®T®...00"

These tensor fields determines four bigraded subalgebras of the algebra 7 (E, N), which will
be called: vertical, horizontal, vertical-horizontal and horizontal-vertical subalgebras, respectively.
We remark that the vertical, horizontal and horizontal-vertical subalgebras depend of the nor-
malisation. The vertical-horizontal subalgebra is independent of the normalisation and coincides
with the subalgebra of T (£, E) given by the d-tensor fields of the type (0,q,7,0),¢,7 € N on E.
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Definition 3.4. The vertical (v), horizontal (h), vertical-horizontal (vh) and horizontal-vertical
(hv)-lifts are the restrictions of the v-lift to the following submodules of tensor fields of type
(p,q,7,8) on M.

(31) V= Vrerme)=Tr (), B = Vimreme=1r 00 VR =Vi1orne), AU = vimre e
Examples.

1) For I and I7)y, the identical automorphism of £ and TM, we obtain
(32) ()" =V, (Irm)"=H.

2) Considering algebraic combinations of the vertical and horizontal lifts for certains structures
on the base manifold A and the vector bundle £, we can obtain interesting structures on the total
space E.

a) For I¢ and Iry, we get
(33) (Ie)* = (Irar)* = F.
b) For two metrics g on M and v on &, we obtain
(34) G=g"+7"
which is a metric on F, generalising the metric of Sasaki on the tangent bundle [4].

Remark. Denoting by ¥ and & the vertical and horizontal lifts, defined in [4], for h € T}}(€) and
k € T}HM), we have
W=k +H, k" =k V.

Hence, A7 is not vertical and k" is not horizontal. After that, h? and kP are more complicated
than A¥ and k.

4. Derivation laws in the algebras of d—tensor fields.

If we give a connection V on M and a connection D on &, then we obtain connections in the
bundles TM, T*M, £* and so, in each of the vector bundle ®*TM ®" £ 4 T*M ®° £*. Hence,

Proposition 4.1. A pair (V, D) of linear connections, on M and &, determines a law of derivation
in the fourgraded algebra T (M,€) of d—tensor fields on M.

But if we give a linear connection D on the total space E of the vector bundle £, generally it
does not determine a law of derivation in the algebra of d—tensor fields on E. However we have

Proposition 4.2. A linear connection D on the total space E of the vector bundle & determines
a law of derivation in the fourgraded algebra T (€, E) of d-tensor fields on E if and only if it
preserves the vertical subbundle.

Proof. In fact, D preserving the type of d-tensor fields, it has to preserve the type (0,0,1,0,),
that is the vertical subbundle. Conversely, if D preserves the vertical subbundle, it comes out that
it preserves also the orthogonal dual VL E and so it induces by restriction, linear connections on
VE and V+E, denoted by D. Putting then

(35) D4B =

and Da = Daa
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for A,B € T*(E) and a € T;(E), we obtain linear connections D in the bundles WE and WE
and so a law of derivation in the algebra 7 (¢, E). It follows also

Proposition 4.3. A connection D on the total space E of the vector bundle § determines a law
of derivation in the algebra of d—tensor fields on E if and only if

((36) poDyoi=0, VA e TYE).

5. Derivation laws in the algebra on N—decomposable tensor fields.
Let D be a linear connection in £ and N the corresponding normalisation on E.

Definition 5.1. A wvertical connection is a linear connection D on the total space E of the vector
bundle £, which preserves the vertical subbundle i.e.

(37) D4sB e VTYE), YA TYE),B e VT'(E).
It follows
Proposition 5.1. A linear connection D on the total space E is vertical if and only if

((38) HoDyoV =0, VA€ T'(E).

Hence, a vertical connection induces by restriction, a linear connection on the vetical subbundle
VE and also on the orthogonal dual V+E. It follows that a vertical connection defines a law of
derivation in the algebra of vertical-horizontal tensor fields on F.

Definition 5.2. The vertical lift of a linear connection D in the vector bundle &, is the linear
connection DY on the vertical subbundle V E, given by

(39) D%u’ = (Dxu)?, Dyv' =0, VX € THM), wu,veTHE).
For the curvature R of DV, we obtain

(40) Rynynu’ = (REyu)? and zero in rest .

Hence, R = 0 if and only if RP = 0.

Definition 5.3. A horizontal connection is a linear connection D on the total space E of the
vector bundle € which preserves the horizontal subbundle i.e.

(41) DB € HT'(E), VA € TYE), B€ HT'(E).
It follows

Proposition 5.2. A linear connection D on the total space E of the vector bundle & is horizontal
if and only if

((42) VoDyoH =0, VAT'(E).
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A horizontal connection on E induces, by restrictions, linear connections on the horizontal
subbundle H E and on its dual orthogonal H*E. Hence, a horizontal connection defines a law of
derivation in the algebra of horizontal-vertical tensor fields on F.

Definnition 5.4. The horizontal lift of a linear connection V on the base manifold M of £, with
respect to the linear connection D on &, is the linear connection V* on the horizontal subbundle
HE, given by

(43) V’}U,Y" = (VxY)h, Vi Y =0, VX,Y,e T' (M), ueT').
For the curvature 7% of V" we get
(44) 7N€X;,y;. Z" = (RYy Z)" and zero in rest.

Hence, R=0 if and only if RY = 0. .
A vertical connection D on E, generally does not carry a vertical 1-form on E to a vertical
one. In fact, if @ € 71(E), then we have

(45) (Daa)(X") = —a(D4X"), VA € TVE), X € TH(M).

Hence, Da is vertical if and only if D4 X" is horizontal for each X € T1(M), that is if D is also
horizontal.

Definition 5.5. A N-decomposable connection is a linear connection D on the total space E of
the vector bundle ¢ which induces a derivation law in the fourgraded algebra of N—decomposable
tensor fields.

From the previous considerations it follows

Proposition 5.3. A connection D, on the total space E of a vector bundle &, determines a law
of derivation in the algebra of N-decomposable tensor fields on E if and only if it satisfies one of
the following conditions:
1) D is in the same time vertical and horizontal connection,
2) D preserves the subalgebra of vertical tensor fields,
3) D preserves the subalgebra of horizontal tensor fields,
4) D is a F-conection, that is DF = 0,
)

5) There exists a pair of connection (25, 5) on VE and HE so that

(46) Du=DioV+DyoH, VAeT\E).

These connections were studied in [1,5,6] and called d-connections. In a more general setting
they were considered in [2,3].

Definition 5.6. The v-lift of a pair (V, D) of linear connections, on the base manifold M and
the vector bundle &, with respect to the normalisation N defined by D, is the N-decomposable
connection D¥ on the total space E, given by

(47) D4y =D4YoV +VhoH  VAecTYE).



For the torsion 7" and the curvature R” of D", we obtain
(48) TYX" YY" =TY(X,Y)" + yRY,  and zero in rest.
(49) Rnyn Z" = (RYy Z)", Rinynu’ = (RFyu)’  and zero in rest,

where TV and RV are the torsion and the curvature of V and R is the curvature of D.

The lift D¥ was considered in [4] and called the horizontal lift of the pair (V, D), but it
determines a law of derivation in all the algebra of N—decomposable tensor fields.

These considerations can be extended as follows. Let D° be a fixed connection on the vector
bundle €. Considering a connection D on £ we can see that putting
(50) 2 u’ = (Dxu)¥, Div® = 0,

Xho

we obtain a connection D¥ on the vertical subbundle, called the vg—vertical lift of D. Now we
can give

Definition 5.7. The vg-lift of a pair (V, D) of connections on M and &, with respect to the
normalisation Ny, defined by the fixed connection D° on &, is the connection D* on E given by

((51) DY = DY oV 4+ Vi o HO

where V0 and H° are the projectors corresponding to DP. For the torsion 7*° and the curvature
R of D¥ we obtain

52 Tro(xh Yhe) = TY(X, V)" + REy, T (X" u®) = S(X,u)", T"(u’,v") =0,
XY

where S = D — DO,

Z" = (R%y Z)" RY u’ = (Rgyu)’

Xhoyho

(53) R%, o

and zero in rest.

The case of tangent bundle, where the difference between our definitions and those given before
is more important, will be treated in another work.
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