30 On almost para-Hermitian manifolds

Colaboration with Fernando Etayo

Algebras Groups and Geometries, 16, (1999), Hadronic Press Inc., 47-61.

1. Introduction

In the last time the almost para-Hermitian (aph) structures are researched by many geometers for their interesting properties and useful applications in the theoretical physics (see for example [4] and the references therein). In the study of these structures is used generally the Levi-Civita connection of the associated metric. But, as in the Hermitian case, it is possible to consider a canonical connection, strongly related to the aph- structure and which was introduced by P. Libermann [8].

In this work, we give an invariant study for the canonical connection and we use it to obtain some simple characterisations for certain classes of aph- structures. The organisation of the paper is as follows: in the second section we present the basic result about almost para-Hermitian (aph) manifolds; in the third section we study the canonical connection, proving that it is invariant under the action of a certain group of automorphisms of the module of connections; in the fourth one we obtain some important classes of aph-structures and the last three sections are devoted to other connections compatible with an aph-structure, the expressions in local coordinates and the examples.

2. Basic results

We remember some definitions and results concerning paracomplex manifolds, compatible connections and para-Hermitian structures.

Let M be a connected and paracompact C^{∞} -manifold, $\mathcal{F}(M)$ the ring of real functions, $\mathcal{T}_q^p(M)$ the $\mathcal{F}(M)$ -module of (p,q) tensor fields and $\mathcal{T}(M)$ the $\mathcal{F}(M)$ -tensor algebra of M. Denote by TM the total space of the tangent bundle of M.

Definition 2.1. An almost paracomplex (apc) structure on the manifold M is a tensor field $F \in \mathcal{T}_1^1(M)$ which satisfies the conditions

$$(1) F^2 = I, TrF = 0.$$

An almost paracomplex (apc) manifold is a manifold endowed with an apc-structure.

It follows that dim M = 2n and F is a particular almost product structure on M, with the projectors

(2)
$$F_1 = \frac{I+F}{2}; \ F_2 = \frac{I-F}{2}$$

and the eigendistributions (vector subbundles of TM)

(3)
$$V_1 = F_1(TM), V_2 = F_2(TM), dimV_1 = dimV_2 = n.$$

Definition 2.2. A paracomplex (pc) structure on M is an apc- structure F with the property that the distributions V_1 and V_2 are involutive.

Using a result obtained by one of us in a more general setting [2], we obtain

Proposition 2.3. The set of connections ∇ on M which are compatible with an apc-structure F (i.e., $\nabla F = 0$) is given by

(4)
$$\nabla = \Phi_F(\mathring{\nabla}) + \Psi_F(\sigma),$$

where $\overset{\circ}{\nabla}$ is a fixed arbitrary connection, σ is any (1,2)-tensor field on M and $\forall X \in \mathcal{T}^1(M)$

(5)
$$\Phi_F(\mathring{\nabla})_X = \frac{1}{2}(\mathring{\nabla}_X + F \circ \mathring{\nabla}_X \circ F), \Psi_F(\sigma)_X = \frac{1}{2}(\sigma_X + F \circ \sigma_X \circ F).$$

As in the complex case [7] one obtains

Proposition 2.4. An apc-structure F on M is paracomplex if and only if it satisfies one of the conditions:

- a) The Nijenhuis tensor N of F vanishes (i.e., F is integrable)
- b) There exists a symmetric F-connection ∇ on M (i.e., $\nabla F = 0$).

Definition 2.5. An almost para-Hermitian (aph) structure on the manifold M is a pair (F, G), where F is an almost product structure and G is a pseudo-Riemannian metric on M related by one of the following equivalent compatibility conditions

(6)
$$G \circ (F \times F) = -G, \ G \circ (F \times I) = -G \circ (I \times F).$$

An almost para-Hermitian (aph) manifold is a manifold endowed with an aph-structure (F, G). The 2-form on M given by

$$(7) \Omega = G \circ (F \times I)$$

is called the fundamental 2-form associated to the aph-structure (F, G).

 Ω defines an almost symplectic structure on M, which satisfies the condition

(8)
$$\Omega \circ (F \times F) = -\Omega.$$

It follows from (6) TrF = 0, i.e. F defines an apc-structure on M, signG = (n, n), i.e. G defines a neutral structure (metric) on M and dimM = 2n. From (6) and (8) it results that

the eigendistributions V_1 and V_2 are maximal isotropic for G and Ω , i.e. $G\mid_{V_1}=G\mid_{V_2}=0$, $\Omega\mid_{V_1}=\Omega\mid_{V_2}=0$.

3. The canonical connection on an aph-manifold

Beside the Levi-Civita connection of G, used by many authors in the study of an aph-structure, there exists another connection, very convenient for such a structure given by

Proposition 3.1. For an aph-structure (F,G) on a manifold M there exists an unique connection ∇ with torsion T which satisfies the conditions:

(9)
$$\nabla F = 0, \ \nabla G = 0, \ T \circ (F_1 \times F_2) = 0.$$

Proof. Uniqueness: Considering V_1 and V_2 as subbundles of TM, from $\nabla F = 0$ one obtains

(10)
$$\nabla_X Y_i \in \mathcal{T}^1(M, V_i), \ \forall X \in \mathcal{T}^1(M), Y_i \in \mathcal{T}^1(M, V_i), i = 1, 2,$$

that is, V_1 and V_2 are invariant to parallel transport defined by ∇ on M.

Then, since $T \circ (F_1 \times F_2) = 0$, we get

(11)
$$\nabla_{X_1} X_2 = F_2[X_1, X_2], \ \nabla_{X_2} X_1 = F_1[X_2, X_1], \ \forall X_i \in \mathcal{T}^1(M, V_i), i = 1, 2.$$

Finally, taking account of $\nabla G = 0$, we obtain

(12)
$$G(\nabla_{X_1}Y_1, Z_2) = X_1G(Y_1, Z_2) - G([X_1, Z_2], Y_1) G(\nabla_{X_2}Y_2, Z_1) = X_2G(Y_2, Z_1) - G([X_2, Z_1], Y_2).$$

From (11) and (12) it results that ∇ is unique.

Existence: Considering $\nabla: \mathcal{T}^1(M) \times \mathcal{T}^1(M) \to \mathcal{T}^1(M)$ given by (11) and (12) and setting $\nabla_X f = X(f)$ for $f \in \mathcal{F}(M)$, it is easy to check that ∇ defines a connection on M which satisfies (9). \square

Definition 3.2. We shall call the *canonical connection* associated to aph-structure (F, G), the connection given by (11) and (12).

Since V_1 and V_2 are invariant to parallel transport defined by ∇ on M, then setting

(13)
$$\nabla_X Y_1 = \nabla_X Y_1, \ \nabla_X Y_2 = \nabla_X Y_2, \ \forall X \in \mathcal{T}^1(M), \ Y_i \in \mathcal{T}^1(M, V_i), \ i = 1, 2,$$

we obtain linear connections $\overset{i}{\nabla}$ for each bundle V_i . We call the *torsion* of the connection $\overset{i}{\nabla}$, the tensor field

(14)
$$\overset{i}{T} = F_i \circ T \circ (F_i \times F_i), \ i = 1, 2,$$

restricted to V_i and we obtain

$$\overset{i}{T}(X_i, Y_i) = \overset{i}{\nabla}_{X_i} Y_i - \overset{i}{\nabla}_{Y_i} X_i - F_i[X_i, Y_i], \ i = 1, 2.$$

Setting then

(15)
$$\overset{1}{S} = F_2 \circ T \circ (F_1 \times F_1), \ \overset{2}{S} = F_1 \circ T \circ (F_2 \times F_2),$$

one gets

We call $\stackrel{1}{S}$ and $\stackrel{2}{S}$ the relative torsions or tensors of non-holonomy for the distributions V_1 and V_2 . We remark that the condition $T \circ (F_1 \times F_2) = 0$ is equivalent with $T \circ (F \times F) = T$.

Let be $R_{XY} = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$ the curvature tensor field of ∇ and $\tilde{R}_{XYZW} = G(R_{XY}Z, W)$. From $\nabla F = 0$, $\nabla G = 0$ and $\nabla \Omega = 0$ it follows respectively

(17)
$$R_{XY} \circ F = F \circ R_{XY}, \ \widetilde{R}_{XYZW} = -\widetilde{R}_{XYWZ}, \ \widetilde{R}_{XYF(Z)W} = -\widetilde{R}_{XYZF(W)}.$$

Considering R_{XY} as a (0,2) tensor field on M, we find

(18)
$$\widetilde{R}_{XY} \circ (F \times F) = -\widetilde{R}_{XY}$$

and therefore $R_{XY} \mid_{V_1} = R_{XY} \mid_{V_2} = 0$. Denoting by D_F the derivative in $\mathcal{T}(M)$ defined by F, we obtain from (6), (8), (17) and (18)

(19)
$$D_F G = 0, D_F \Omega = 0, D_F R_{XY} = 0, D_F \widetilde{R}_{XY} = 0.$$

Setting then

(20)
$$\tau_t = I \cosh t + F \sinh t, \ t \in \mathbf{R},$$

we obtain a 1-parameter group of automorphisms for the $\mathcal{F}(M)$ -module $\mathcal{T}^1(M)$. It may be extended to tensor algebra $\mathcal{T}(M)$, by putting

(21)
$$\tau_t(f) = f, \ \tau_t(\omega) = \omega \circ \tau_t^{-1}, \\ \tau_t(T)(\omega^1, \dots, X_1, \dots) = T(\omega^1 \circ \tau_t, \dots, \tau_t^{-1}(X_1), \dots),$$

where $f \in \mathcal{F}(M)$, $\omega^i \in \mathcal{T}_1(M)$, $X_i \in \mathcal{T}^1(M)$ and $T \in \mathcal{T}_q^p(M)$. From here, we obtain the following geometrical meaning for the relations (19):

Proposition 3.3. The tensor fields G, Ω , R_{XY} and \tilde{R}_{XY} are invariant under the action of the group (20) on the algebra $\mathcal{T}(M)$, given by (21).

Putting for a linear connection ∇ on M

(22)
$$\tau_t(\nabla)_X = \tau_t \circ \nabla_X \circ \tau_t^{-1}, \ t \in \mathbf{R},$$

we obtain a group of automorphisms for the $\mathcal{F}(M)$ -affine module $\mathcal{C}(M)$ of connections on M [2] and from $\nabla F = 0$ it follows

Proposition 3.4. The canonical connection ∇ of the aph-structure (F,G) is invariant under the action (22) of the group (20) on the affine module $\mathcal{C}(M)$.

For the Nijenhuis tensor field N of F given by

$$N(X,Y) = [X,Y] - F[FX,Y] - F[X,FY] + [FX,FY]$$

we obtain

(23)
$$N(X_1, Y_1) = 4F_2[X_1, Y_1], N(X_1, Y_2) = 0, N(X_2, Y_2) = 4F_1[X_2, Y_2]$$

and taking account of (16), it follows

(24)
$$N(X_1, Y_1) = -4\overset{1}{S}(X_1, Y_1), \ N(X_1, Y_2) = 0, \ N(X_2, Y_2) = -4\overset{2}{S}(X_2, Y_2).$$

Finally, for the exterior derivative of the fundamental 2-form Ω , taking account of $\nabla\Omega=0$, we get

$$3d\Omega(X,Y,Z) = \sum_{XYZ} \Omega(T(X,Y),Z),$$

(where \sum_{XYZ} denotes the cyclic sum) and from here it follows

$$3d\Omega(X_1, Y_1, Z_1) = \sum_{X_1Y_1Z_1} \Omega(\overset{1}{S}(X_1, Y_1), Z_1), \quad 3d\Omega(X_1, Y_1, Z_2) = \Omega(\overset{1}{T}(X_1, Y_1), Z_2),$$

$$3d\Omega(X_2, Y_2, Z_1) = \Omega(\overset{2}{T}(X_2, Y_2), Z_1), \quad 3d\Omega(X_2, Y_2, Z_2) = \sum_{X_2Y_2Z_2} \Omega(\overset{2}{S}(X_2, Y_2), Z_2).$$

4. Some important classes of aph-structures

From the properties of the canonical connection ∇ associated to an aph-structure on the manifold M, established up to here, we shall see that the torsion T of this connection is very important for the characterisation of certain aph-structures. Since V_1 and V_2 have a symmetrical position in an aph structure, we shall enumerate only the classes relative to V_1 or to V_1 and V_2 simultaneously.

Definition 4.1. We shall say that an aph-structure on M is:

- a) 1-para-Hermitian if and only if the distribution V_1 is involutive,
- b) para-Hermitian if and only if V_1 and V_2 are involutive,
- c) 1-almost para-Kählerian if and only if $i_{X_1}i_{Y_1}d\Omega = 0$,
- d) almost para-Kählerian if and only if $d\Omega = 0$,
- e) 1-para-Kählerian if and only if V_1 is involutive and $i_{X_1}i_{Y_1}d\Omega=0$,
- f) para-Kählerian if and only if it is para-Hermtian and almost para-Kählerian.

From the previous considerations, we obtain

Proposition 4.2. An aph-structure (F,G) on the manifold M is:

- a) 1-para-Hermitian if and only if $N \mid_{V_1} = 0$, or $\stackrel{1}{S} = 0$, or $D_F(i_{X_1}T) = 0$, $\forall X_1 \in T^1(M, V_1)$,
- b) para-Hermitian if and only if N=0, or $\overset{1}{S}=\overset{2}{S}=0$, or $D_F(i_XT)=0$, $\forall X\in \mathcal{T}^1(M)$,
- c) 1-almost para-Kählerian if and only if $\sum_{X_1Y_1Z_1} \Omega(\overset{1}{S}(X_1,Y_1),Z_1) = 0, \overset{1}{T} = 0,$
- d) almost para-Kählerian if and only if

$$\textstyle \sum_{X_1Y_1Z_1} \Omega(\overset{1}{S}(X_1,Y_1),Z_1) = 0, \ \overset{1}{T} = 0, \quad \sum_{X_2Y_2Z_2} \Omega(\overset{2}{S}(X_2,Y_2),Z_2) = 0, \ \overset{2}{T} = 0,$$

- e) 1-para-Kählerian if and only if $\overset{1}{S} = \overset{1}{T} = 0$, or $T|_{V_1} = 0$, or $i_{X_1}T = 0$,
- f) para-Kählerian if and only if N=0, $d\Omega=0$, or T=0, or $\nabla=\overset{\sim}{\nabla}$, where $\overset{\sim}{\nabla}$ is the Levi-Civita connection of G.

5. Other connections compatible with an aph-structure

From the work [2] it follows

Proposition 5.1. The set of connections on M compatible with the aph-structure (F,G) is given by

(26)
$$\nabla = \Phi_F \circ \Phi_G(\overset{\circ}{\nabla}) + \Psi_F \circ \Psi_G(\sigma),$$

where $\overset{\circ}{\nabla}$ is an arbitrary fixed connection, σ any (1,2)-tensor field on M, Φ_F and Ψ_F are given by (5) and

(27)
$$\Phi_{G}(\mathring{\nabla})_{X} = \frac{1}{2}(\mathring{\nabla}_{X} + G^{-1} \circ \mathring{\nabla}_{X} \circ G), \quad \forall X \in \mathcal{T}^{1}(M).$$

$$\Psi_{G}(\sigma)_{X} = \frac{1}{2}(\sigma_{X} + G^{-1} \circ \sigma_{X} \circ G),$$

Taking here $\nabla = \stackrel{\sim}{\nabla}$, the Levi-Civita connection of G and setting $\sigma = 0$, we obtain

$$\Phi_G(\widetilde{\nabla}) = \widetilde{\nabla}, \ \Phi_F(\widetilde{\nabla})_X = \frac{1}{2}(\widetilde{\nabla}_X + F \circ \widetilde{\nabla}_X \circ F), \ \Psi_F \circ \Psi_G(0) = 0$$

and so we get

Proposition 5.2. If $\overset{\sim}{\nabla}$ is the Levi-Civita connection of G, setting

(28)
$$D_X = \frac{1}{2} (\widetilde{\nabla}_X + F \circ \widetilde{\nabla}_X \circ F),$$

then D is a connection on M compatible with the aph-structure (F,G).

The connection D will be called the *natural* connection associated to the aph-structure (F, G) on M.

From (28) it follows

(29)
$$D_X Y_1 = F_1 \overset{\sim}{\nabla}_X Y_1, \ D_X Y_2 = F_2 \overset{\sim}{\nabla}_X Y_2, \ \forall X \in \mathcal{T}^1(M), \ Y_i \in \mathcal{T}^1(M, V_i)$$

and so

(30)
$$D_X = F_1 \circ \overset{\sim}{\nabla}_X \circ F_1 + F_2 \circ \overset{\sim}{\nabla}_X \circ F_2.$$

Hence, the restrictions of D to the subbundles V_1 and V_2 coincide with the projections of $\overset{\sim}{\nabla}$ to V_1 and V_2 . For the torsion τ of D we obtain

(31)
$$\tau(X_1, Y_1) = \stackrel{1}{S}(X_1, Y_1), \ \tau(X_2, Y_2) = \stackrel{2}{S}(X_2, Y_2)$$
$$\tau(X_1, Y_2) = F_2 \stackrel{2}{\nabla}_{Y_2} X_1 - F_1 \stackrel{2}{\nabla}_{X_1} Y_2.$$

thus showing that the natural connection D is more complicate than the canonical connection ∇ . It is easy to see that if ∇ is an arbitrary metric connection for G on M, with torsion T, and $\stackrel{\sim}{\nabla}$ is the Levi-Civita connection of G, then one has

$$G(\nabla_X Y, Z) = G(\widetilde{\nabla}_X Y, Z) + \frac{1}{2} \{ G(T(X, Y), Z) - G(T(Y, Z), X) + G(T(Z, X), Y) \}.$$

Taking here for ∇ the canonical connection of (F,G), we obtain

(32)
$$\nabla_{X_1} Y_1 = F_1 \widetilde{\nabla}_{X_1} Y_1 + \frac{1}{2} \widetilde{T}(X_1, Y_1), \ \nabla_{X_2} Y_2 = F_2 \widetilde{\nabla}_{X_2} Y_2 + \frac{1}{2} \widetilde{T}(X_2, Y_2)$$

and so it follows

Proposition 5.3. The natural connection D given by (28) coincides with the canonical connection ∇ for the aph-structure (F,G) if and only if $\overset{1}{T}=\overset{2}{T}=0$ or $\tau\circ(F_1\times F_2)=0$. The natural connection D coincides with the Levi-Civita connection $\overset{\sim}{\nabla}$ of G if and only if T=0 or $\tau=0$ or $\overset{\sim}{\nabla} F=0$, i.e., in the case of a para-Hermitian structure (F,G) on M.

6. Expressions in local coordinates

In the case of a para-Hermitian structure (F, G), the distributions V_1 and V_2 being involutive, we can choose the local coordinates $(x^i, x^{\bar{\imath}})$, $i = 1, \ldots, n$, $\bar{\imath} = n + i$, so that the leaves of V_1 and V_2 will be given respectively by

(33)
$$x^{\overline{\imath}} = \text{const.}, \ x^i = \text{const.}$$

Setting $e_i = \frac{\partial}{\partial x^i}$, $e_{\bar{i}} = \frac{\partial}{\partial x^{\bar{i}}}$, from (3) and (6) we obtain for F and G

(34)
$$F(e_i) = e_i, \ F(e_{\overline{i}}) = -e_{\overline{i}}, \ G(e_i, e_k) = G(e_{\overline{i}}, e_{\overline{k}}) = 0, \ G(e_i, e_{\overline{k}}) = G_{i\overline{k}}.$$

For the canonical connection ∇ we get from (11) and (12)

(35)
$$\nabla_{e_{\overline{j}}} e_k = \Gamma^i_{jk} e_i, \ \nabla_{e_{\overline{j}}} e_{\overline{k}} = 0, \ \nabla_{e_{\overline{j}}} e_k = 0, \ \nabla_{e_{\overline{j}}} e_{\overline{k}} = \Gamma^{\overline{i}}_{\overline{j}\overline{k}} e_{\overline{i}},$$

where

(36)
$$\Gamma^{i}_{jk} = G^{i\bar{\ell}} \partial_j G_{k\bar{\ell}}, \ \Gamma^{\bar{i}}_{\bar{j}\bar{k}} = G^{\bar{i}\ell} \partial_{\bar{j}} G_{\bar{k}\ell}.$$

For the torsion T of ∇ we have

(37)
$$T(e_j, e_k) = T^i_{jk} e_i, \ T(e_j, e_{\overline{k}}) = 0, \ T(e_{\overline{j}}, e_k) = 0, \ T(e_{\overline{j}}, e_{\overline{k}}) = T^{\overline{i}}_{\overline{i}\overline{k}} e_{\overline{i}},$$

where

$$(38) T^{i}_{jk} = G^{i\bar{\ell}}(\partial_{j}G_{k\bar{\ell}} - \partial_{k}G_{j\bar{\ell}}), \ T^{\bar{\imath}}_{\bar{\jmath}\bar{k}} = G^{\bar{\imath}\ell}(\partial_{\bar{\jmath}}G_{\bar{k}\ell} - \partial_{\bar{k}}G_{\bar{\jmath}\ell}).$$

Finally, for the curvature R of ∇ we obtain

$$(39) R_{e_j e_k} = 0, \ R_{e_{\overline{j}} e_k} e_{\ell} = R^i_{\overline{j} k \ell} e_i, \ R_{e_j e_{\overline{k}}} e_{\overline{\ell}} = R^{\overline{i}}_{\overline{j} k \overline{\ell}} e_{\overline{i}}, \ R_{e_{\overline{j}} e_{\overline{k}}} = 0,$$

where

$$(40) R_{\bar{7}k\ell}^{i} = \partial_{\bar{7}} \Gamma_{k\ell}^{i}, \ R_{i\bar{k}\bar{\ell}}^{\bar{\imath}} = \partial_{j} \Gamma_{k\bar{\ell}}^{\bar{\imath}}.$$

Particularly, in the case of a para-Kählerian structure, from T=0 one obtains

$$\partial_j G_{k\overline{\ell}} = \partial_k G_{j\overline{\ell}}, \ \partial_{\overline{\jmath}} G_{\overline{k}\ell} = \partial_{\overline{k}} G_{\overline{\jmath}\ell}$$

and therefore, there exist some local functions A_{ℓ} and $A_{\overline{\ell}}$ on M, so that

$$G_{k\overline{\ell}} = \partial_k A_{\overline{\ell}}, \ G_{\overline{k}\ell} = \partial_{\overline{k}} A_{\ell}.$$

But G being symmetric, it follows $\partial_k A_{\bar{\ell}} = \partial_{\bar{k}} A_{\ell}$ and so, there exist a local function B on M so that $A_k = \partial_k B$, $A_{\bar{k}} = \partial_{\bar{k}} B$. Therefore in the para-Kählerian case, we have

(41)
$$G_{j\bar{k}} = \frac{\partial^2 B}{\partial x^j \partial x^{\bar{k}}} = B_{j\bar{k}}.$$

Because $G^{j\bar{k}} = B^{j\bar{k}}$, where $B^{j\bar{k}}$ are the elements of the matrix $[B_{i\bar{k}}]^{-1}$, we obtain

(42)
$$\Gamma^{i}_{jk} = \frac{\partial^{3}B}{\partial x^{j}\partial x^{k}\partial x^{\overline{\ell}}}B^{i\overline{\ell}}, \ \Gamma^{\overline{\imath}}_{\overline{\jmath}\overline{k}} = \frac{\partial^{3}B}{\partial x^{\overline{\jmath}}\partial x^{\overline{k}}\partial x^{\ell}}B^{\overline{\imath}\ell},$$

and

$$R^{i}_{\bar{j}k\ell} = \frac{\partial^{4}B}{\partial x^{\bar{j}}\partial x^{k}\partial x^{\ell}\partial x^{\bar{m}}}B^{i\bar{m}} + \frac{\partial^{3}B}{\partial x^{k}\partial x^{\ell}\partial x^{\bar{m}}}\frac{\partial B^{i\bar{m}}}{\partial x^{\bar{j}}}$$

$$R^{\bar{i}}_{j\bar{k}\bar{\ell}} = \frac{\partial^{4}B}{\partial x^{j}\partial x^{\bar{k}}\partial x^{\bar{\ell}}\partial x^{m}}B^{\bar{i}m} + \frac{\partial^{3}B}{\partial x^{\bar{k}}\partial x^{\bar{\ell}}\partial x^{m}}\frac{\partial B^{\bar{i}m}}{\partial x^{j}}$$

Finally for the principal component of the tensor field $\stackrel{\sim}{R}$, we get

$$(44) \hspace{1cm} \widetilde{R}_{j\overline{k}\ell\overline{m}} = -\frac{\partial^4 B}{\partial x^j \partial x^{\overline{k}} \partial x^\ell \partial x^{\overline{m}}} + \frac{\partial^3 B}{\partial x^j \partial x^\ell \partial x^{\overline{p}}} \frac{\partial^3 B}{\partial x^{\overline{k}} \partial x^{\overline{m}} \partial x^q} B^{\overline{p}q}.$$

7. Example

Let N be a C^{∞} -manifold endowed with a linear connection D and $\pi:TN\to N$ its tangent bundle. To each local chart (U,φ) in $x\in N$, with $\varphi(x)=(x^i)$, we associate on the total space TN the chart $(\pi^{-1}(U),\phi)$ in z=(x,y), with $\phi(z)=(x^i,y^i)$, where $y=y^i\frac{\partial}{\partial x^i}$. For a function $f\in \mathcal{F}(N)$, let $f^v=f\circ\pi$ its vertical lift. For $\omega\in\mathcal{T}_1(N)$ and $S\in\mathcal{T}_1^1(N)$, given locally by $\omega=\omega_i(x)dx^i$, $S=S_j^i(x)\frac{\partial}{\partial x^i}\otimes dx^j$, we set

(45)
$$\gamma(\omega_j dx^j)_z = \omega_j(x)y^j, \ \gamma\left(S^i_j \frac{\partial}{\partial x^i} \otimes dx^j\right)_z = y^j S^i_j(x) \frac{\partial}{\partial y^i}.$$

We remark that $\gamma(\omega) \in \mathcal{F}(TN)$ and $\gamma(S) \in \mathcal{T}^1(TN)$. It is easy to prove that for two vector fields $A, B \in \mathcal{T}^1(TN)$ one has A = B if and only if $A(\gamma\omega) = B(\gamma\omega)$ for each $\omega \in \mathcal{T}_1(N)$. To a vector field $X \in \mathcal{T}^1(N)$, we shall associate the *vertical lift* $X^v \in \mathcal{T}^1(TN)$ and the *horizontal*

lift $X^h \in \mathcal{T}^1(TN)$ with respect to a linear connection D on the base manifold N, characterised respectively by

(46)
$$X^{v}(\gamma\omega) = (\omega(X))^{v}, \ X^{h}(\gamma\omega) = \gamma(D_{X}\omega), \ \forall \omega \in \mathcal{T}_{1}(N).$$

We have the following useful formulas

(47)
$$X^{v}(f^{v}) = 0, X^{h}(f^{v}) = (X(f))^{v},$$

and

(48)
$$[X^{v}, Y^{v}] = 0, [X^{h}, Y^{v}] = (D_{X}Y)^{v}, [X^{h}, Y^{h}] = [X, Y]^{h} - \gamma(\Re_{XY})$$

where \Re_{XY} is the curvature tensor field for D. Setting

(49)
$$F(X^v) = X^v, \ F(X^h) = -X^h, \ \forall X \in \mathcal{T}^1(N),$$

we obtain an almost product structure F on TN with the eigendistributions $V_1 = VTN$, the vertical distribution of the fibration, and $V_2 = HTN$, the horizontal distribution of the connection D (see [3] and [5]). Let g be a (pseudo)-Riemannian metric on N and G the pseudo-Riemannian metric on TN given by

(50)
$$G(X^{v}, Y^{v}) = G(X^{h}, Y^{h}) = 0, \ G(X^{v}, Y^{h}) = G(X^{h}, Y^{v}) = (g(X, Y))^{v}.$$

It is easy to check that the pair (F, G) satisfies the compatibility conditions (6) and therefore we have

Proposition 7.1. The almost product structure F, associated to a linear connection D by (49), and the pseudo-Riemannian metric G, associated to D and the (pseudo)-Riemannian metric g by (50), determine an aph-structure (F,G) on the total space TN.

In the following, we suppose that the connection D is a metric one for g, i.e., Dg = 0. From the formulas (11) and (12), taking account of (47), (48), (49), we obtain for the canonical connection ∇ associated to the aph-structure (F, G),

(51)
$$\nabla_{X^v} Y^v = 0, \ \nabla_{X^h} Y^v = (D_X Y)^v, \ \nabla_{X^v} Y^h = 0, \ \nabla_{X^h} Y^h = (D_X Y)^h.$$

So, we have

Proposition 7.2. The canonical connection ∇ , associated to the aph-structure (F,G) given by (49) and (50) on the total space TN, is the horizontal lift, in the sense of K. Yano and S. Ishihara [9], of the connection D on the base manifold N.

For the torsion and curvature tensor fields T and R of the canonical connection ∇ we obtain

(52)
$$T(X^{v}, Y^{v}) = T(X^{v}, Y^{h}) = 0, \ T(X^{h}, Y^{h}) = (t(X, Y))^{h} + \gamma(\Re_{XY}),$$
$$R_{X^{v}Y^{v}} = R_{X^{v}Y^{h}} = 0, \ R_{X^{h}Y^{h}}Z^{v} = (\Re_{XY}Z)^{v}, \ R_{X^{h}Y^{h}}Z^{h} = (\Re_{XY}Z)^{h},$$

where t and \Re_{XY} are the torsion and the curvature tensors for D. It follows

(53)
$$T = 0, T(X^h, Y^h) = (t(X, Y))^h, S = 0, S(X^h, Y^h) = \gamma(\Re_{XY}).$$

For the Nijenhuis tensor of the apc-strucure F we get

(54)
$$N(X^{v}, Y^{v}) = N(X^{v}, Y^{h}) = 0, \ N(X^{h}, Y^{h}) = -4\gamma(\Re_{XY}).$$

Finally, for the exterior derivative of the fundamental 2-form Ω , we find

$$d\Omega(X^{v}, Y^{v}, Z^{v}) = d\Omega(X^{v}, Y^{v}, Z^{h}) = 0$$

$$3d\Omega(X^{h}, Y^{h}, Z^{v}) = -(g(t(X, Y), Z))^{v},$$

$$3d\Omega(X^{h}, Y^{h}, Z^{h}) = \gamma(\sum_{XYZ} i_{X}g \circ \Re_{YZ}).$$

From the formulas (53), (54), (55) it results

Proposition 7.3. The aph-structure (F,G) on the total space TN, associated to a (pseudo)-Riemannian metric g and a metric connection D on the base manifols N, by the relations (49), (50), is generally 1-para-Kählerian. It is almost para-Kählerian, para-Hermitian or para-Kählerian respectively if and only if the connection D is torsionless, has vanishing curvature or is both torsionless and with vanishing curvature.

Final remark. Let (F,G) be an aph-structure on a manifold M,∇ the canonical connection, T its torsion and Ψ the tensor field given by $\Psi(X,Y,Z)=G((X,T(Y,Z))$. One can prove that Ψ has the same symmetries as the tensor field $\Phi=\overset{\sim}{\nabla}\Omega$ (where $\overset{\sim}{\nabla}$ is the Levi-Civita connection of G), considered independently in [1] and [6] for to obtain the classification of the aph-manifolds. Hence one can obtain classification of the aph-manifolds, given in terms of Ψ , which may coincides with the classification based on Φ , but with different characterizations.

REFERENCES

- C. Bejan. A Classification of the almost parahermitian manifolds. Proc. Conference on Diff. Geom. and Appl. Dubrovnik, 1988, 23-27.
- V. Cruceanu. Connections compatibles avec certaines structures sur un fibré vectoriel banachique. Czechoslovak Math. J. 24 (1974), 126-142.
- 3. V. Cruceanu. Une structure parakählerienne sur le fibré tangent. Tensor N.S. 39 (1982), 81-84.
- V. Cruceanu, P. Fortuny and P. M. Gadea. A survey on Paracomplex Geometry. Rocky Mountain J. Math. 26,1 (1996), 83-115.
- F. Etayo. On the horizontal lift of a connection to the tangent bundle. Atti Sem. Mat. Fis. Modena 43 (1995), 501-510.
- P. M. Gadea and J. Munoz Masqué. Classification of almost para-Hermitian manifolds. Rend. Mat. Appl. 11 (1991), 377-396.
- 7. S. Kobayashi and K. Nomizu. Foundations of Differential Geometry. Intersc. Publ., 1963, 1969.
- P. Libermann. Sur le problème d'équivalence de certaines structures infinitésimales. Ann. Mat. Pura Appl (4) 36 (1954), 27-120.
- K. Yano and S. Ishihara. Tangent and Cotangent Bundles. Differential Geometry. M. Dekker, N. York, 1973.