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1. Introduction

In the last time the almost para-Hermitian (aph) structures are researched by many geometers
for their interesting properties and useful applications in the theoretical physics (see for example
[4] and the references therein). In the study of these structures is used generally the Levi-Civita
connection of the associated metric. But, as in the Hermitian case, it is possible to consider
a canonical connection, strongly related to the aph- structure and which was introduced by P.
Libermann [8].

In this work, we give an invariant study for the canonical connection and we use it to obtain
some simple characterisations for certain classes of aph- structures. The organisation of the paper
is as follows: in the second section we present the basic result about almost para-Hermitian (aph)
manifolds; in the third section we study the canonical connection, proving that it is invariant
under the action of a certain group of automorphisms of the module of connections; in the fourth
one we obtain some important classes of aph-structures and the last three sections are devoted to
other connections compatible with an aph-structure, the expressions in local coordinates and the
examples.

2. Basic results

We remember some definitions and results concerning paracomplex manifolds, compatible connec-
tions and para-Hermitian structures.

Let M be a connected and paracompact C>-manifold, F (M) the ring of real functions, 7 (M)
the F(M)-module of (p,q) tensor fields and 7 (M) the F(M)-tensor algebra of M. Denote by
T M the total space of the tangent bundle of M.

Definition 2.1. An almost paracomplez (apc) structure on the manifold M is a tensor field
F € T}(M) which satisfies the conditions

(1) F2 =1, TrF =0.

An almost paracomplex (apc) manifold is a manifold endowed with an apc-structure.

247



It follows that dimM = 2n and F is a particular almost product structure on M, with the
projectors

F _ I-F

@ F=t -

and the eigendistributions (vector subbundles of T'M)
(3) Vi = F{(TM), Vo = F5(TM), dimV; = dimV, = n.

Definition 2.2. A paracomplez (pc) structure on M is an apc- structure F' with the property
that the distributions V; and V5 are involutive.

Using a result obtained by one of us in a more general setting [2], we obtain

Proposition 2.3. The set of connections V on M which are compatible with an apc-structure
(i.e., VF =0) is given by

o

(4) V = ®p(V) + Vr(o),

where % is a fived arbitrary connection, o is any (1,2)-tensor field on M and VX € T(M)

o 1 o o 1
(5) Op(V)x = 3(Vx +FoVxoF),Vp(o)x = 5(0’){ + FooxoF).
As in the complex case [7] one obtains

Proposition 2.4. An apc-structure F' on M is paracomplex if and only if it satisfies one of the
conditions:

a) The Nijenhuis tensor N of I vanishes (i.e., F is integrable)

b) There exists a symmetric F-connection V on M (i.e., VF =0).

Definition 2.5. An almost para-Hermitian (aph) structure on the manifold M is a pair (F,G),
where F is an almost product structure and G is a pseudo-Riemannian metric on M related by
one of the following equivalent compatibility conditions

(6) Go(FxF)=-G, Go(FxI)=-Go(IxF).

An almost para-Hermitian (aph) manifold is a manifold endowed with an aph-structure (F,G).
The 2-form on M given by

(7 Q=Go(FxI)
is called the fundamental 2-form associated to the aph-structure (F,G).

Q defines an almost symplectic structure on M, which satisfies the condition
(8) Qo(FxF):—Q.

It follows from (6) TrF = 0, i.e. F defines an apc-structure on M, signG = (n,n), ie. G
defines a neutral structure (metric) on M and dimM = 2n. From (6) and (8) it results that
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the eigendistributions 17 and V, are maximal isotropic for G and ©, i.e. G |y,= G |1,= 0,
Q=9 ,=0.

3. The canonical connection on an aph-manifold

Beside the Levi-Civita connection of G, used by many authors in the study of an aph-structure,
there exists another connection, very convenient for such a structure given by

Proposition 3.1. For an aph-structure (F,G) on a manifold M there exists an unique connection
V with torsion T which satisfies the conditions:

(9) VF:O, VGZO.TO(leFg):O

Proof. Uniqueness: Considering V; and V; as subbundles of TM, from VF = 0 one obtains
(10) VxY € THM,V;), VX € THM),Y; € THM,V}),i=1,2,

that is, V; and V; are invariant to parallel transport defined by V on M.
Then, since T o (F} x F,) = 0, we get

(11) VX11¥2 = Fz[}(LXQL VX2X1 = FI[XQMXVlL VXl S TIU\[, ‘/;).Z = 1, 2.
Finally, taking account of VG = 0, we obtain

G(Vx,Y1, Z2) = XiG(Y1. Zo) — G([ X1, Z5), 1)
Y

12 . i 1
(12) G(Vx,Ya, Z1) = XoG (Y, Z1) — G([ X2, Z1), Ya).

From (11) and (12) it results that V is unique.

Euistence: Considering V : T'(M) x T (M) — T'(M) given by (11) and (12) and setting
Vxf=X(f) for f € F(M), it is easy to check that V defines a connection on M which satisfies
(9). O

Definition 3.2. We shall call the canonical connection associated to aph-structure (F,G), the
connection given by (11) and (12).

Since V; and V; are invariant to parallel transport defined by V on M, then setting
1 2
(13) VxYi = VY, VxYs = VxYs, VX € THM), Y; € TH(M,V;), i=1,2,

i i
we obtain linear connections V for each bundle V;. We call the torsion of the connection V, the
tensor field

(14) T=FoTo(FxF),i=12
restricted to V; and we obtain

T(X,,Y)) = VY = Vy, X; = BIX, Y], i = 1,2,
Setting then

1 2
(15) S:FQOTO(F1XF1>,S:FIOTO(FQXFQ),
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one gets

1 2

(16) S(X, Y1) = —F[X1, Y1), S(X2,Ys) = —Fi[Xs, Ya).

1 2
We call S and S the relative torsions or tensors of non-holonomy for the distributions V7 and
V,. We remark that the condition T o (Fy x F3) = 0 is equivalent with T o (F' x F) =T.

Let be Rxy = [Vx, Vy] — Vix.y) the curvature tensor field of V and Rxyzw = G(RxyZ, W).
From VF =0, VG = 0 and VQ = 0 it follows respectively

(17) Rxy o F = FoRxy, Rxyzw = —Rxywz, Rxyrizyw = —Rxvzrw)-
Considering ]Ni’Xy as a (0,2) tensor field on M, we find
(18) Ryy o (F x F) = —Ryy

and therefore IN%XY [y, = R xy 1= 0. Denoting by D the derivative in 7 (A]) defined by F, we
obtain from (6), (8), (17) and (18)

(19) DpG =0, DpQ =0, DpRyy =0, DpRyxy = 0.
Setting then
(20) 7 = I cosht + F'sinht, t € R,

we obtain a l-parameter group of automorphisms for the F(M)-module 7*(Af). It may be
extended to tensor algebra 7 (M), by putting

(f)=f, nlw) =wo o

(21) Tf(T)((.dl, . :‘XI: . ) = T(w‘l O Tty .’thl(}(l)7 .. .),

where f € F(M), w' € T,(M), X; € T'(M) and T € 7P(M). From here, we obtain the following
geometrical meaning for the relations (19):

Proposition 3.3. The tensor fields G, ), Rxy and ]N?Xy are invariant under the action of the
group (20) on the algebra T (M), given by (21).

Putting for a linear connection V on M

(22) Tt(v>x =noVxo 7';1, teR,

we obtain a group of automorphisms for the F (M )-affine module C(M) of connections on M [2]
and from VF = 0 it follows

Proposition 3.4. The canonical connection V of the aph-structure (F,G) is invariant under the
action (22) of the group (20) on the affine module C(A1).

For the Nijenhuis tensor field N of F' given by
NX,)Y)=[X,Y]- FIFX,Y] - FIX,FY]+ [FX,FY]
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we obtain
(23) N(X1, Y1) = 45X, Y1), N(X1,Y2) =0, N(Xy, Y2) = 4F1[ X5, Ya)

and taking account of (16), it follows

1 2
(24) N(X1, Vi) = —45(X1, Y1), N(X1,Ya) = 0, N(Xa, Ya) = —45(X,, Ya).

Finally, for the exterior derivative of the fundamental 2-form €, taking account of VQ = 0, we
get
3dUX.Y, Z) = > QT Z),
XYz

(where )" -, denotes the cyclic sum) and from here it follows

1
3N Y1, Z) = Y. QS (X0, Y1), Z), 3dQ(X1, Vi, Z) = QT(X0, Vi), Zs),

thzl

(25)
2 2
3 X2, Yo, 21) = AT (X0, Ya), 1), 3dQU(Xo, Yo, Zo) = Y QS(Xa,Ya), Za).

X2YaZs

4. Some important classes of aph-structures

From the properties of the canonical connection V associated to an aph-structure on the manifold
M, established up to here, we shall see that the torsion T of this connection is very important for
the characterisation of certain aph-structures. Since V; and V; have a symmetrical position in an
aph structure, we shall enumerate only the classes relative to V] or to V; and V5 simultaneously.

Definition 4.1. We shall say that an aph-structure on M is:

a) 1-para-Hermitian if and only if the distribution V; is involutive,
b) para-Hermitian if and only if V; and V; are involutive,
¢) 1-almost para-Kahlerian if and only if ix,iy,dQ = 0,
d) almost para-Kdahlerian if and only if dQ2 = 0,

e) 1-para-Kdhlerian if and only if V; is involutive and ix, iy, dQ? = 0,

)
f) para-Kdhlerian if and only if it is para-Hermtian and almost para- Kahlerian.
From the previous considerations, we obtain

Proposition 4.2. An aph-structure (F,G) on the manifold M is:
a) l-para-Hermitian if and only if N |v,= 0, or é’ =0, or Dp(ix,T) =0, ¥X; € T'(M, V),
b) para-Hermitian if and only if N =0, or é' = % =0, or Dp(ixT) =0, VX € THM),
c) 1-almost para-Kdhlerian if and only if Y x v,z Q(é'(Xl,Yl),Zl) =0, 11“: 0,

d) almost para-Kdhlerian if and only if

1

1 2 2
Yoxviz, US(X1, V1), Z1) =0, T =0, > x.y,z US(Xe,Y2),Z5) =0, T =0,



11
e) 1-para-Kdahlerian if and only if S=T =0, or T |,,=0, orix, T =0,

f) para-Kahlerian if and only if N = 0,dQ2 =0, orT =0, orV = %, where % is the Levi-Civita
connection of G.

5. Other connections compatible with an aph-structure
From the work [2] it follows

Proposition 5.1. The set of connections on M compatible with the aph-structure (F,G) is
given by

o

(26) V:®FO®G(V)+‘I’FO‘I/G(U),

whereV is an arbitrary fized connection, o any (1,2)-tensor field on M, ®p and Vg are given
by (5) and

o

1 o o
P6(V)y = 3(Vx+GoVxo),

1
Uslo)x = 5(0;\- +Gtooxo@),

(27) VX € THM).
Taking here V = %, the Levi-Civita connection of G and setting o = 0, we obtain
26(V) = ¥, 8p(V)x = 5(Vx + Fo Vx o F), U0 Ug(0) = 0
and so we get
Proposition 5.2. If% is the Levi-Civita connection of G, setting
(25) Dy = 2(Vx + FoVxoF),
then D is a connection on M compatible with the aph-structure (F, Q).

The connection D will be called the natural connection associated to the aph-structure (F, G)
on M.
From (28) it follows

(29) DxYi = VY1, DxYs = BVxYs, VX € TY(M), Y; € TY(M, V)
and so
(30) Dx=FoVxoF + FoVxoh.

Hence, the restrictions of D to the subbundles V; and V5 coincide with the projections of V to V;
and V5. For the torsion 7 of D we obtain

1 2

T(AX'h }/1) = S(Xl*}/i)7 T(‘¥27}6) = S(X2~}/2)

(31) L
T(Xl,}/z) = FQVYQAXI — F1VX1Y'2.
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thus showing that the natural connection D is more complicate than the canonical connection V.
It is easy to see that if V is an arbitrary metric connection for G on M, with torsion T, and

% is the Levi-Civita connection of G, then one has
~ 1
G(VxY.Z) = G(VxY, 2) + 5{G(T(X.Y), 2) - GT(Y. 2), X) + G(T(Z,X), Y}
Taking here for V the canonical connection of (F,G), we obtain
~ 1L ~ 12,
(32) Vx, Y1 =FVx Y+ §T(z\1,Y1), Vx,Yo = FoVx, Yo + §T(A2,Y2)
and so it follows

Proposition 5.3. The natural connection D gi'oen by (28) coincides with the canonical connection

V for the aph-structure (F, Q) if and only sz T =0 orto(FyxFy) = 0. The natural connectzon
D coincides with the Levi-Civita connection V of Gif and only if T =0 or 7 =0 or VF =0,

i.e., in the case of a para-Hermitian structure (F,G) on M.
6. Expressions in local coordinates

In the case of a para-Hermitian structure (F, G), the distributions V; and V; being involutive, we
can choose the local coordinates (2, 2%), i = 1,...n, 7= n+1, so that the leaves of V; and V; will
be given respectively by

(33) x¥ = const., ' = const.

0
Setting e; = 5?— &= from (3) and (6) we obtain for I’ and G
Tt ol

(34) F(e;) = ¢€j, Flez) = —e5, Glej,ex) = Gleg, e) = 0, Glej, e5) = Gz

For the canonical connection V we get from (11) and (12)

(35) Ve, er = F;kei, Veeg =0, Veer =0, Veer = F%ez-,
where
(36) Ui = G*0,Gg, Ty = G*0,G.

For the torsion T of V we have

(37) T(ej,ex) = Tirei, Tlej ep) =0, T(ez.ex) =0, T(e, ) = T e,
where
(38) Tl = GU(0;Gg — G), T = G*(05Gr, — 0Ge).

Finally, for the curvature R of V we obtain

(39) Reye, =0, Reepe0 = R;,Mei, Re,ec67 = R—-e: R

]A€7 :07

€TE%
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where

(40) Riy = 35T, Ry = o7

7_
gu KT
Particularly, in the case of a para-Kéahlerian structure, from 7' = 0 one obtains
9;Gig = 8ijZv 05 Gy = O Gy
and therefore, there exist some local functions A, and Az on M, so that
Gz = Oy, G = A

But G being symmetric, it follows 0,A; = 9;A, and so, there exist a local function B on M so
that Ay = 0xB, Ay = 0;B. Therefore in the para-Kahlerian case, we have

9’B

Because G’F = B* where B’F are the elements of the matrix [Bj;]’l, we obtain

. 3 - _ SB _
(42) i, = ﬁ__gﬂﬁ = _a—_ .
J OzidxkOzt J 0x70xkOzt
and
R 0*B e 9B  OB™
(43) T DxI0rk O™ Ozkortox™ Ol
43
_ o'B m 0*B  OB™
R = — .
Ik 9rigxkoztor™ Oxkdztoxm Ol

Finally for the principal component of the tensor field R, we get

N 9B 8B 9B =
44 R = — 3 ‘ P 9k B
( ) jkém Oxidrkdxtor™ + OxiOxtOxP OxkdxmOre

7. Example
Let N be a C**-manifold endowed with a linear connection D and 7 : TN — N its tangent bundle.
To each local chart (U, ) in £ € N, with ¢(z) = (%), we associate on the total space TN the
o 0
chart (772(U), ¢) in z = (z,y), with ¢(z) = (2%, y*), where y = yza—xi. For a function f € F(N),
let f* = f o its vertical lift. For w € T1(N) and S € T}/(N), given locally by w = w;(x)dz?,
D
S = Sj(x)% ® dz’, we set
j i i (9
(45) Y(w;dz?), = wj(z)y’, v S 5@ dx? JS (x )5—

We remark that y(w) € F(TN) and y(S) € THTN). It is easy to prove that for two vector
fields A,B € TY(TN) one has A = B if and only if A(yw) = B(yw) for each w € T;(N). To
a vector field X € T!(N), we shall associate the vertical lift X° € T*(TN) and the horizontal
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lift X" € TY(TN) with respect to a linear connection D on the base manifold N, characterised
respectively by

(46) X°(qw) = (X)), X" (7w) = 7(Dxw), Ve € T(N).

We have the following useful formulas

(47) XU(fY) =0, XM(f*) = (X(/))",
and
(48) (XY =0, (X" Y] = (DxY)", [X"Y"] = [X,Y]" = v(Rxy)
where Ryy is the curvature tensor field for D.
Setting
(49) F(X") = X¥, F(X") = - X" VX € T}(N),

we obtain an almost product structure F on TN with the eigendistributions V; = VTN, the
vertical distribution of the fibration, and Vo, = HTN, the horizontal distribution of the connection
D (see [3] and [5]). Let g be a (pseudo)-Riemannian metric on N and G the pseudo-Riemannian
metric on TN given by

(50) G(X",Y") = G(X"Y") =0, G(XY, Y") = GX", YY) = (¢9(X,Y)).

It is easy to check that the pair (F, G) satisfies the compatibility conditions (6) and therefore we
have

Proposition 7.1. The almost product structure F, associated to a linear connection D by (49),
and the pseudo-Riemannian metric G, associated to D and the (pseudo)-Riemannian metric g by
(50), determine an aph-structure (F,G) on the total space TN.

In the following, we suppose that the connection D is a metric one for g, i.e., Dg = 0. From the
formulas (11) and (12), taking account of (47), (48), (49), we obtain for the canonical connection
V associated to the aph-structure (F, G),

(51) VYV =0, VYV = (DxY)?, Vo Y =0, Vi YA = (DxY)".
So, we have

Proposition 7.2. The canonical connection V, associated to the aph-structure (F,G) given by
(49) and (50) on the total space TN, is the horizontal lift, in the sense of K. Yano and S. Ishihara
[9], of the connection D on the base manifold N.

For the torsion and curvature tensor fields 7' and R of the canonical connection V we obtain
T(X¥, YY) =T(X", Y =0, T(X", V") = #(X, V)" + v(Rxy),

(52) , : h h
R‘X'T)’l' - eryh = O, Rx‘hyh ZL = (S‘}%)(YZ)L, RthnZ = (%‘X’YZ) 5

where t and Ryy are the torsion and the curvature tensors for D. It follows

2

1 2 1
(53) T=0,T(X"Y"=@tX, V) S=0, S(X",Y") = 4(Ryy).
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For the Nijenhuis tensor of the apc-strucure F' we get

(54)

N(X¥, YY) = N(XY,Y") =0, N(X", Y") = —4y(Rxy).

Finally, for the exterior derivative of the fundamental 2-form €2, we find

(55)

dQ(X®,Y?, ZY) = dQXY, YV, Zh) =0
3dQUX YR ZY) = —(g(t(X,Y), Z))",
3dUXM YR ZM) = A gyzixgoRyz).

From the formulas (53), (54), (55) it results

Proposition 7.3. The aph-structure (F,G) on the total space TN, associated to a (pseudo)-
Riemannian metric g and a metric connection D on the base manifols N, by the relations (49),
(50), is generally 1-para-Kdhlerian. It is almost para-Kdhlerian, para-Hermitian or para-Kdhlerian
respectively if and only if the connection D is torsionless, has vanishing curvature or is both
torsionless and with vanishing curvature.

Final remark. Let (F,G) be an aph-structure on a manifold A, V the canonical connection, T'
its torsion and Wthe tensor field given by ¥(X,Y, Z) = G((X,T(Y, Z)). One can prove that ¥ has

the same symmetries as the tensor field & = V! (where V is the Levi-Civita connection of G),
considered independently in [1] and [6] for to obtain the classification of the aph-manifolds. Hence
one can obtain classification of the aph-manifolds, given in terms of ¥, which may coincides with
the classification based on ®, but with different characterizations.
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